【題目】著名數(shù)學(xué)教育家波利亞曾說:“對一個數(shù)學(xué)問題,改變它的形式,變換它的結(jié)構(gòu),直到發(fā)現(xiàn)有價值的東西,這是數(shù)學(xué)解題的一個重要原則.”
閱讀下列兩則材料,回答問題
材料一:平方運算和開方運算是互逆運算,如:a2±2ab+b2=(a±b)2,那么=|a±b|,那么如何將雙重二次根式(a>0,b>0,a±2>0)化簡呢?如能找到兩個數(shù)m,n(m>0,n>0),使得(2+()2=a即m+n=a,且使即mn=b,那么a±2=()2+()2±2=(2
∴==|,雙重二次根式得以化簡.
例如化簡:.∵3=1+2且2=1×2,∴3+2=()2+()2+2,
∴==1+.
材料二:在直角坐標(biāo)系xoy中,對于點P(x,y)和Q(x,y′)出如下定義:若y′=,則稱點Q為點P的“橫負(fù)縱變點”例如,點(3,2)的“橫負(fù)縱變點”為(3,2),點(﹣2,5)的“橫負(fù)縱變點”為(﹣2,﹣5)
問題:
(1)請直接寫出點(﹣3,﹣2)的“橫負(fù)縱變點”為 ;化簡= ;
(2)點M為一次函數(shù)y=﹣x+1圖象上的點,M′為點M的橫負(fù)縱變點,已知N(1,1),若M′N=,求點M的坐標(biāo);
(3)已知b為常數(shù)且1≤b≤2,點P在函數(shù)y=﹣x2+16(+)(﹣7≤x≤a)的圖象上,其“橫負(fù)縱變點”的縱坐標(biāo)y′的取值范圍是﹣32<y′≤32,若a為偶數(shù),求a的值.
【答案】(1)(﹣3,2);﹣;(2)當(dāng)a≥0時,M'(3,﹣2);當(dāng)a<0時,M'(﹣1,﹣2);(3)a=4或a=6
【解析】
(1)﹣3<0,得到(﹣3,﹣2)的“橫負(fù)縱變點”為(﹣3,2);==﹣;
(2)設(shè)點M(a,1﹣a),當(dāng)a≥0時,M'(a,1﹣a),M'(3,﹣2);當(dāng)a<0時,M'(a,a﹣1),M'(﹣1,﹣2);
(3)=+1+1﹣=2,令y'=,當(dāng)﹣7≤x<0時,﹣32<y'≤17,當(dāng)x≥0時,y'≤32,即可求出a.
解:(1)∵﹣3<0,根據(jù)“橫負(fù)縱變點”的定義,
∴(﹣3,﹣2)的“橫負(fù)縱變點”為(﹣3,2);
==﹣;
故答案為:(﹣3,2);﹣;
(2)設(shè)點M(a,1﹣a),
當(dāng)a≥0時,M'(a,1﹣a),
∵N(1,1),M′N=,
∴(1﹣a)2+a2=13,
∴a=3或a=﹣2(舍),
∴M'(3,﹣2);
當(dāng)a<0時,M'(a,a﹣1),
∵N(1,1),M′N=,
∴(1﹣a)2+(2﹣a)2=13,
∴a=﹣1或a=4(舍),
∴M'(﹣1,﹣2);
(3)∵1≤b≤2,∴0≤b﹣1≤1,
∵=+1+1﹣=2,
∴y=﹣x2+32,
∴y'=,
當(dāng)﹣7≤x<0時,﹣32<y'≤17;
當(dāng)x≥0時,y'≤32;
令﹣x2+32=17,解得x1=或x2=﹣(舍);
令﹣x2+32=﹣32,解得x1=8或x2=﹣8(舍);
∴≤a<8,
∵a是偶數(shù),
∴a=4或a=6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=90°,點D在射線BC上(與B、C兩點不重合),以AD為邊作正方形ADEF,使點E與點B在直線AD的異側(cè),射線BA與射線CF相交于點G.
(1)若點D在線段BC上,如圖1.
①依題意補(bǔ)全圖1;
②判斷BC與CG的數(shù)量關(guān)系與位置關(guān)系,并加以證明;
(2)若點D在線段BC的延長線上,且G為CF中點,連接GE,AB=,則GE的長為_____,并簡述求GE長的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線,直線,當(dāng)任取一值時,對應(yīng)的函數(shù)值分別 為,若,取中的較小值記為;若,記,例如:當(dāng)時,,此時,下列判斷:
①當(dāng)時,;
②當(dāng)時,值越大,值越小;
③使得大于2的值不存在;
④使得的值是或.
其中正確的是_______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形OABC中,OA=4,OC=2,以點O為坐標(biāo)原點,OA所在的直線為x軸,建立直角坐標(biāo)系.
(1)將矩形OABC繞點C逆時針旋轉(zhuǎn)至矩形DEFC,如圖1,DE經(jīng)過點B,求旋轉(zhuǎn)角的大小和點D,F的坐標(biāo);
(2)將圖1中矩形DEFC沿直線BC向左平移,如圖2,平移速度是每秒1個單位長度.
①經(jīng)過幾秒,直線EF經(jīng)過點B;
②設(shè)兩矩形重疊部分的面積為S,運動時間為t,寫出重疊部分面積S與時間t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中AB=AC,BD平分∠ABC交AC于點D,DE平分∠ADB交AB于點E,CF∥AB交ED的延長線于F,若∠A=52°,求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富校園文化生活,促進(jìn)學(xué)生積極參加體育運動,某校準(zhǔn)備成立校排球隊,現(xiàn)計劃購進(jìn)一批甲、乙兩種型號的排球,已知一個甲種型號排球的價格與一個乙種型號排球的價格之和為140元;如果購買6個甲種型號排球和5個乙種型號排球,一共需花費780元.
(1)求每個甲種型號排球和每個乙種型號排球的價格分別是多少元?
(2)學(xué)校計劃購買甲、乙兩種型號的排球共26個,其中甲種型號排球的個數(shù)多于乙種型號排球,并且學(xué)校購買甲、乙兩種型號排球的預(yù)算資金不超過1900元,求該學(xué)校共有幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=mx+2mx-3m(m≠0)的頂點為H,與軸交于A、B兩點(B點在A點右側(cè)),點H、B關(guān)于直線l:對稱,過點B作直線BK∥AH交直線l于K點.
(1)求A、B兩點坐標(biāo),并證明點A在直線I上。
(2)求此拋物線的解析式;
(3)將此拋物線向上平移,當(dāng)拋物線經(jīng)過K點時,設(shè)頂點為N,求出NK的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】參照學(xué)習(xí)函數(shù)的過程與方法,探究函數(shù)的圖象與性質(zhì).因為,即,所以我們對比函數(shù)來探究.
列表:
描點:在平面直角坐標(biāo)系中,以自變量的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點,如圖所示:
(1)請補(bǔ)全函數(shù)圖象;
(2)觀察圖象并分析表格,回答下列問題:
①當(dāng)時,隨的增大而_________;(填“增大”或“減小”)
②的圖象是由的圖象向________平移________個單位而得到;
③圖象關(guān)于點_________中心對稱.(填點的坐標(biāo))
(3)結(jié)合函數(shù)圖象,當(dāng)時,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線直線一個交點另一個交點在軸上,點是線段上異于的一個動點,過點作軸的垂線,交拋物線于點.
(1)求拋物線的解析式;
(2)是否存在這樣的點,使線段長度最大?若存在,求出最大值及此時點的坐標(biāo),若不存在,說明理由;
(3)求當(dāng)為直角三角形時點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com