【題目】如圖,點E在AD的延長線上,下列條件中能判斷AB∥CD的是( )
A.∠C=∠CDEB.∠ABD=∠CBDC.∠ABD=∠CDBD.∠C+∠ADC=180°
【答案】C
【解析】
結(jié)合圖形分析兩角的位置關(guān)系,根據(jù)平行線的判定方法判斷.
A、∠C和∠CDE是AD、BC被CD所截得到的一對內(nèi)錯角,
∴當(dāng)∠C=∠CDE時,可得AD∥BC,故A不正確;
B、∠ABD和∠CBD是是同一頂點的角,
∴無法得到AB∥CD,故B不正確;
C、∠ABD和∠CDB是AB、CD被BD所截得到的一對內(nèi)錯角,
∴當(dāng)∠ABD=∠CDB時,可得AB∥CD,故C正確;
D、∠C和∠ADC是AD、BC被CD所截得到的一對同旁內(nèi)角,
∴當(dāng)∠C+∠ADC=180°時,可得AD∥BC,故D不正確.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某圖書館計劃選購甲、乙兩種圖書.甲圖書每本價格是乙圖書每本價格的2.5倍,如果用900元購買圖書,則單獨購買甲圖書比單獨購買乙圖書要少18本.
(1)甲、乙兩種圖書每本價格分別為多少元?
(2)如果該圖書館計劃購買乙圖書的本數(shù)比購買甲圖書本數(shù)的2倍多8本,且用于購買甲、乙兩種圖書的總費用不超過1725元,那么該圖書館最多可以購買多少本乙圖書?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)分別填在相應(yīng)的集合里:
整數(shù){ …},
正數(shù){ …},
非負(fù)數(shù){ …},
分?jǐn)?shù){ …},
正有理數(shù){ …}。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個直角三角形紙片ABO放置在平面直角坐標(biāo)系中,點A(,0),點B(0,1),點O(0,0).P是邊AB上的一點(點P不與點A,B重合),沿著OP折疊該紙片,得點A的對應(yīng)點A',當(dāng)∠BPA'=30°時,點P的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OD平分∠BOC,OE平分∠AOC.
(1)若∠BOC=60°,∠AOC=40°,求∠DOE的度數(shù);
(2)若∠DOE=n°,求∠AOB的度數(shù);
(3)若∠DOE+∠AOB=180°,求∠AOB與∠DOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD邊長為1,點P是射線AD的上的一個動點,點A關(guān)于直線BP的對稱點是點Q,設(shè)AP=x.
(1)求當(dāng)D,Q,B三點在同一直線上時對應(yīng)的x的值.
(2)當(dāng)△CDQ為等腰三角形時,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD和菱形AEFG開始完全重合,現(xiàn)將菱形AEFG繞點A順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角∠BAE=α(0°<α<360°),則當(dāng)α=_____時,菱形的頂點F會落在菱形ABCD的對角線所在的直線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖:
根據(jù)以上信息解答下列問題:
(1)這次接受調(diào)查的市民總?cè)藬?shù)是______;
(2)扇形統(tǒng)計圖中,“電視”所對應(yīng)的圓心角的度數(shù)是______;
(3)請補全條形統(tǒng)計圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480km的目的地,乙車比甲車晚出發(fā)2h(從甲車出發(fā)時開始計時).圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(km)與時間x(h)之間的函數(shù)關(guān)系對應(yīng)的圖象(線段AB表示甲車出發(fā)不足2h因故障停車檢修).請根據(jù)圖象所提供的信息,解決以下問題:
(1)求乙車所行路程y與時間x之間的函數(shù)關(guān)系式;
(2)求兩車在途中第二次相遇時,它們距出發(fā)地的路程;
(3)乙車出發(fā)多長時間,兩車在途中第一次相遇.(寫出解題過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com