【題目】已知反比例函數(shù)y=﹣ ,下列結(jié)論不正確的是(
A.圖象必經(jīng)過(guò)點(diǎn)(﹣1,2)
B.y隨x的增大而增大
C.圖象在第二、四象限內(nèi)
D.若x>1,則y>﹣2

【答案】B
【解析】解:當(dāng)x=﹣1時(shí),代入反比例函數(shù)解析式可得y=2, ∴反比例函數(shù)y=﹣ 的圖象必過(guò)點(diǎn)(﹣1,2),
故A正確;
∵在反比例函數(shù)y=﹣ 中,k=﹣2<0,
∴函數(shù)圖象在二、四象限,且在每個(gè)象限內(nèi)y隨x的增大而增大,
故B不正確,C正確;
當(dāng)x=1時(shí),y=﹣2,且在第四象限內(nèi)y隨x的增大而增大,
∴當(dāng)x>1時(shí),則y>﹣2,
故D正確.
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用反比例函數(shù)的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握性質(zhì):當(dāng)k>0時(shí)雙曲線(xiàn)的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減; 當(dāng)k<0時(shí)雙曲線(xiàn)的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,點(diǎn)E在邊AD上,∠ABE=45°,BE=DE,連接BD,點(diǎn)P在線(xiàn)段DE上,過(guò)點(diǎn)P作PQ∥BD交BE于點(diǎn)Q,連接QD.設(shè)PD=x,△PQD的面積為y,則能表示y與x函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=8,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),按A→B→C的方向在A(yíng)B和BC上移動(dòng),記PA=x,點(diǎn)D到直線(xiàn)PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=ax2+bx﹣4與x軸交于A(yíng)(﹣4,0)、B(2,0)兩點(diǎn),與y軸交于點(diǎn)C,連接AC,BC.

(1)求該拋物線(xiàn)的解析式;
(2)若點(diǎn)P是x軸上的一動(dòng)點(diǎn),且位于A(yíng)B之間,過(guò)點(diǎn)P作PE∥AC,交BC于E,連接CP,設(shè)P點(diǎn)橫坐標(biāo)為x,△PCE的面積為S,請(qǐng)求出S關(guān)于x的解析式,并求△PCE面積的最大值;
(3)點(diǎn)為D(﹣2,0),若點(diǎn)M是線(xiàn)段AC上一動(dòng)點(diǎn),是否存在M點(diǎn),能使△OMD是等腰三角形?若存在,請(qǐng)直接寫(xiě)出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在校園文化藝術(shù)節(jié)中,九年級(jí)一班有1名男生和2名女生獲得美術(shù)獎(jiǎng),另有2名男生和2名女生獲得音樂(lè)獎(jiǎng).
(1)從獲得美術(shù)獎(jiǎng)和音樂(lè)獎(jiǎng)的7名學(xué)生中選取1名參加頒獎(jiǎng)大會(huì),求剛好是男生的概率;
(2)分別從獲得美術(shù)獎(jiǎng)、音樂(lè)獎(jiǎng)的學(xué)生中各選取1名參加頒獎(jiǎng)大會(huì),用列表或樹(shù)狀圖求剛好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線(xiàn)交矩形兩邊于點(diǎn)E,F(xiàn),則EF長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.

(1)【發(fā)現(xiàn)證明】
小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖1證明上述結(jié)論.
(2)【類(lèi)比引申】
如圖2,四邊形ABCD中∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿(mǎn)足什么關(guān)系時(shí),仍有EF=BE+FD
(3)【探究應(yīng)用】如圖3,在某公園的同一水平面上,四條通道圍成的ABCD,已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40( ,米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng)(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的頂點(diǎn)F是AB中點(diǎn),兩邊FD,F(xiàn)E分別交AC,BC于點(diǎn)D,E兩點(diǎn),當(dāng)∠DFE在△ABC內(nèi)繞頂點(diǎn)F旋轉(zhuǎn)時(shí)(點(diǎn)D不與A,C重合),給出以下個(gè)結(jié)論:①CD=BE ②四邊形CDFE不可能是正方形 ③△DFE是等腰直角三角形 ④S四邊形CDFE= SABC , 上述結(jié)論中始終正確的有(
A.①②③
B.②③④
C.①③④
D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中點(diǎn),AD⊥AE.

(1)求證:AC2=CDBC;
(2)過(guò)E作EG⊥AB,并延長(zhǎng)EG至點(diǎn)K,使EK=EB.
①若點(diǎn)H是點(diǎn)D關(guān)于A(yíng)C的對(duì)稱(chēng)點(diǎn),點(diǎn)F為AC的中點(diǎn),求證:FH⊥GH;
②若∠B=30°,求證:四邊形AKEC是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案