【題目】在一個不透明的布袋里裝有4個標有1,2,3,4的小球,它們的形狀、大小、質(zhì)地完全相同,小李從布袋里隨機取出一個小球,記下數(shù)字為x,小張在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點Q的坐標(x,y).
(1)畫樹狀圖或列表,寫出點Q所有可能的坐標;
(2)求點Q(x,y)在函數(shù)y=﹣x+5圖象上的概率.
【答案】(1)畫樹狀圖或列表見解析;(2).
【解析】
試題根據(jù)題意列出表格,找出所有的點Q坐標,根據(jù)函數(shù)上的點的特征得出符合條件的點,根據(jù)概率的計算方法進行計算.
試題解析:(1)列表得:
(x,y) | 1 | 2 | 3 | 4 |
1 | (1,2) | (1,3) | (1,4) | |
2 | (2,1) | (2,3) | (2,4) | |
3 | (3,1) | (3,2) | (3,4) | |
4 | (4,1) | (4,2) | (4,3) |
點Q所有可能的坐標有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),
(3, 1),(3,2),(3,4),(4,1),(4,2),(4,3)共12種;
(2)∵共有12種等可能的結果,其中在函數(shù)y=﹣x+6圖象上的有2種,即:(2,4),(4,2),
∴點P(x,y)在函數(shù)y=﹣x+6圖象上的概率為:P=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,AB=BD,點B、C、D、G四個點在同一個圓⊙O上,連接BG 并延長交AD于點F,連接DG并延長交AB于點E,BD與CG交于點H,連接FH,下列結 論:①AE=DF;②FH∥AB;③△DGH∽△BGE;④當CG為⊙O的直徑時,DF=AF.其中正確結論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD與正方形CEFG,M是AF的中點,連接DM,EM.
(1)如圖1,點E在CD上,點G在BC的延長線上,請判斷DM,EM的數(shù)量關系與位置關系,并直接寫出結論;
(2)如圖2,點E在DC的延長線上,點G在BC上,(1)中結論是否仍然成立?請證明你的結論;
(3)將圖1中的正方形CEFG繞點C旋轉,使D,E,F(xiàn)三點在一條直線上,若AB=13,CE=5,請畫出圖形,并直接寫出MF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x﹣2的圖象與x軸交于點A,與y軸交于點B,點D的坐標為(﹣1,0),二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過A,B,D三點.
(1)求二次函數(shù)的解析式;
(2)如圖1,已知點G(1,m)在拋物線上,作射線AG,點H為線段AB上一點,過點H作HE⊥y軸于點E,過點H作HF⊥AG于點F,過點H作HM∥y軸交AG于點P,交拋物線于點M,當HEHF的值最大時,求HM的長;
(3)在(2)的條件下,連接BM,若點N為拋物線上一點,且滿足∠BMN=∠BAO,求點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中(如圖),已知點A在x軸的正半軸上,且與原點的距離為3,拋物線y=ax2﹣4ax+3(a≠0)經(jīng)過點A,其頂點為C,直線y=1與y軸交于點B,與拋物線交于點D(在其對稱軸右側),聯(lián)結BC、CD.
(1)求拋物線的表達式及點C的坐標;
(2)點P是y軸的負半軸上的一點,如果△PBC與△BCD相似,且相似比不為1,求點P的坐標;
(3)將∠CBD繞著點B逆時針方向旋轉,使射線BC經(jīng)過點A,另一邊與拋物線交于點E(點E在對稱軸的右側),求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點.
(1)求該拋物線的解析式;
(2)設(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最。咳舸嬖,求出Q點的坐標;若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,∠ACB=30°,將一塊直角三角板的直角頂點P放在兩對角線AC,BD的交點處,以點P為旋轉中心轉動三角板,并保證三角板的兩直角邊分別于邊AB,BC所在的直線相交,交點分別為E,F(xiàn).
(1)當PE⊥AB,PF⊥BC時,如圖1,則的值為 ;
(2)現(xiàn)將三角板繞點P逆時針旋轉α(0°<α<60°)角,如圖2,求的值;
(3)在(2)的基礎上繼續(xù)旋轉,當60°<α<90°,且使AP:PC=1:2時,如圖3,的值是否變化?證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了迎接體育理化加試,九(2)班同學到某體育用品商店采購訓練用球,已知購買3個A品牌足球和2個B品牌足球需付210元;購買2個A品牌足球和1個B品牌足球需付費130元.(優(yōu)惠措施見海報)
(1)求A,B兩品牌足球的單價各為多少元;
(2)為享受優(yōu)惠,同學們決定購買一次性購買足球60個,若要求A品牌足球的數(shù)量不低于B品牌足球數(shù)量的3倍,請你設計一種付費最少的方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,是⊙O的直徑,弦垂直平分,垂足為,連接.
(1)如圖1,求的度數(shù);
(2)如圖2,點分別為上一點,并且,連接,交點為G,R為上一點,連接與交于點H,,求證:;
(3)如圖3,在(2)的條件下,,求⊙O半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com