【題目】某單位計劃在新年期間組織員工到某地旅游,參加旅游的人數(shù)估計為10到25人,甲乙兩家旅行社的服務質(zhì)量相同,且報價都是每人200元,經(jīng)過協(xié)商,甲旅行社表示可以給每位游客七五折優(yōu)惠,乙旅行社表示可以先免去一位游客的旅游費用,然后給予其余游客八折優(yōu)惠.若單位參加旅游的人數(shù)為x人,甲乙兩家旅行社所需的費用分別為y1和y2.
(1)寫出y1,y2與x的函數(shù)關系式并在所給的坐標系中畫出y1,y2的草圖;
(2)根據(jù)圖像回答,該單位選擇哪家旅行社所需的費用最少?
【答案】(1),,圖象見解析;(2)當人數(shù)為16人時,兩家均可選擇,當人數(shù)在之間時選擇乙旅行社,當人數(shù)時,選擇甲旅行社.
【解析】
(1)根據(jù)題意可以直接寫出甲乙旅行社收費、(元與參加旅游的人數(shù)(人之間的關系式,再畫出圖象;
(2)根據(jù)題意,可以列出相應的不等式,從而可以得到該單位選擇哪一家旅行社支付的旅游費用較少.
解:(1)由題意可得,
,
即甲旅行社收費(元與參加旅游的人數(shù)(人之間的關系式是;
,
即乙旅行社收費(元與參加旅游的人數(shù)(人之間的關系式是;
(2)當時,解得,,
即當時,兩家費用一樣;
當時,
解得,,
即當時,乙社費用較低;
當時,
解得,,
即當時,甲社費用較低;
答:當人數(shù)為16人時,兩家均可選擇,當人數(shù)在之間時選擇乙旅行社,當人數(shù)時,選擇甲旅行社.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D是AB邊的中點,過D作DE⊥BC于點E,點P是邊BC上的一個動點,AP與CD相交于點Q.當AP+PD的值最小時,AQ與PQ之間的數(shù)量關系是( )
A.AQ= PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,DE是△ABC的中位線,AF是△ABC的中線.
求證DE=AF.
證法1:∵DE是△ABC的中位線,
∴DE= .
∵AF是△ABC的中線,∠BAC=90°,
∴AF= ,
∴DE=AF.
請把證法1補充完整,并用不同的方法完成證法2.
證法2:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB:y=x+分別交x軸、y軸于點B、A兩點,C(3,0),D、E分別為線段AO和線段AC上一動點,BE交y軸于點H,且AD=CE.當BD+BE的值最小時,則H點的坐標為( )
A. (0,4) B. (0,5) C. (0,) D. (0,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了了解本校1200名學生的課外閱讀的情況,現(xiàn)從個年級隨機抽取了部分學生,對他們一周的課外閱讀時間進行了調(diào)查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關信息,解答下列問題:
(1)本次接受隨機抽樣調(diào)查的學生人數(shù)為 ,圖①中m的值為 .
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù) 、中位數(shù) 和平均數(shù) ;
(3)根據(jù)樣本的數(shù)據(jù),估計該校一周的課外閱讀時間大于6h的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)圖中給出的伯,解容下列問題
(I)放入一個小球水面升高____cm,放入一個大球水面升高_____cm
(2)如果放入10個球,使水面上升到50cm,應放入大球、小像各多少個?
(3)現(xiàn)放入干個球,使水面升高2lcm,且小球個數(shù)為偶數(shù)個,問有幾種可能,請一一列出(寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過正方形ABCD頂點B,C的⊙O與AD相切于點P,與AB,CD分別相交于點E,F,連接EF.
(1)求證:PF平分∠BFD;
(2)若tan∠FBC= ,DF=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點E、F分別是四邊形ABCD的邊AD、BC的中點,G、H分別是對角線BD、AC的中點,要使四邊形EGFH是菱形,則四邊形ABCD需滿足的條件是( )
A.AB=CDB.AC=BDC.AC⊥BDD.AD=BC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com