【題目】已知函數(shù)y=﹣xm﹣1+bx﹣3(m,b為常數(shù))是二次函數(shù),其圖象的對(duì)稱軸為直線x=1
(I)求該二次函教的解析式;
(Ⅱ)當(dāng)﹣2≤x≤0時(shí),求該二次函數(shù)的函數(shù)值y的取值范圍.
【答案】(Ⅰ)該二次函教的解析式為y=﹣x2+2x﹣3;(Ⅱ)﹣11≤y≤﹣3.
【解析】
(Ⅰ)根據(jù)對(duì)稱軸方程,列式求出b的值,從而求得二次函數(shù)的解析式;
(Ⅱ)先由y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2知函數(shù)有最大值﹣2,然后求出x=﹣2和x=0時(shí)y的值即可得答案.
解:(Ⅰ)∵函數(shù)y=﹣xm﹣1+bx﹣3(m,b為常數(shù))是二次函數(shù)其圖象的對(duì)稱軸為直線x=1,
∴m﹣1=2,,
∴m=3,b=2.
∴該二次函教的解析式為y=﹣x2+2x﹣3.
(Ⅱ)∵y=﹣x2+2x﹣3圖象的對(duì)稱軸為直線x=1,并且開(kāi)口向下,
∴當(dāng)﹣2≤x≤0時(shí),y值在對(duì)稱軸的左邊,并且單調(diào)遞增,
當(dāng)x=﹣2時(shí),y=﹣11;
當(dāng)x=0時(shí),y=﹣3;
∴當(dāng)﹣2≤x≤0時(shí),求該二次函數(shù)的函數(shù)值y的取值范圍為﹣11≤y≤﹣3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年非洲豬瘟疫情暴發(fā)后,今年豬肉價(jià)格不斷走高,引起了民眾與政府的高度關(guān)注,據(jù)統(tǒng)計(jì):今年7月20日豬肉價(jià)格比今年年初上漲了60%,某市民今年7月20日在某超市購(gòu)買1千克豬肉花了80元錢.
(1)問(wèn):今年年初豬肉的價(jià)格為每千克多少元?
(2)某超市將進(jìn)貨價(jià)為每千克65元的豬肉,按7月20日價(jià)格出售,平均一天能銷售出100千克,經(jīng)調(diào)查表明:豬肉的售價(jià)每千克下降1元,其日銷售量就增加10千克,超市為了實(shí)現(xiàn)銷售豬內(nèi)每天有1560元的利潤(rùn),并且可能讓顧客得到實(shí)惠,豬肉的售價(jià)應(yīng)該下降多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)某學(xué)校“智慧方園”數(shù)學(xué)社團(tuán)遇到這樣一個(gè)題目:
如圖1,在△ABC中,點(diǎn)O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長(zhǎng).
經(jīng)過(guò)社團(tuán)成員討論發(fā)現(xiàn),過(guò)點(diǎn)B作BD∥AC,交AO的延長(zhǎng)線于點(diǎn)D,通過(guò)構(gòu)造△ABD就可以解決問(wèn)題(如圖2).
請(qǐng)回答:∠ADB= °,AB= .
(2)請(qǐng)參考以上解決思路,解決問(wèn)題:
如圖3,在四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“泥興陶,,是欽州的一張文化名片。欽州市某妮興陶公司以每只60元的價(jià)格銷售一種成本價(jià)為40元的文化紀(jì)念杯,每星期可售出100只。后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),每只杯子的售價(jià)每降低1元,則平均何星期可多買出10只。若該公司銷售這種文化紀(jì)念杯要想平均每星期獲利2240元,請(qǐng)回答:
(1)每只杯應(yīng)降價(jià)多少元?
(2)在平均每星期獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該公司應(yīng)該按原售價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)模型探究:如圖1,D、E、F分別為△ABC三邊BC、AB、AC上的點(diǎn),且∠B=∠C=∠EDF=a.△BDE與△CFD相似嗎?請(qǐng)說(shuō)明理由;
(2)模型應(yīng)用:△ABC為等邊三角形,其邊長(zhǎng)為8,E為AB邊上一點(diǎn),F為射線AC上一點(diǎn),將△AEF沿EF翻折,使A點(diǎn)落在射線CB上的點(diǎn)D處,且BD=2.
①如圖2,當(dāng)點(diǎn)D在線段BC上時(shí),求的值;
②如圖3,當(dāng)點(diǎn)D落在線段CB的延長(zhǎng)線上時(shí),求△BDE與△CFD的周長(zhǎng)之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)C(0,3),與x軸交于A,B兩點(diǎn),點(diǎn)A(﹣1,0).
(I)求該拋物線的解析式;
(Ⅱ)D為拋物線對(duì)稱軸上一點(diǎn),當(dāng)△ACD的周長(zhǎng)最小時(shí),求點(diǎn)D的坐標(biāo);
(Ⅲ)在拋物線上是否存在一點(diǎn)P,使CP恰好將以A,B,C,P為頂點(diǎn)的四邊形的面積分為相等的兩部分?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象過(guò)點(diǎn)、頂點(diǎn)的橫坐標(biāo)為.
(1)求這個(gè)二次函數(shù)的解析式;
(2)點(diǎn)在該一次函數(shù)的圖象上,點(diǎn)在軸上,若以為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】元旦期間,某賓館有50個(gè)房間供游客居住,當(dāng)每個(gè)房間每天的定價(jià)為180元時(shí),房間會(huì)全部住滿;當(dāng)每個(gè)房間每天的定價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.如果游客居住房間,賓館需對(duì)每個(gè)房間每天支出20元的各種費(fèi)用.
(1)若房?jī)r(jià)定為200元時(shí),求賓館每天的利潤(rùn);
(2)房?jī)r(jià)定為多少時(shí),賓館每天的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1) 知識(shí)儲(chǔ)備
①如圖 1,已知點(diǎn) P 為等邊△ABC 外接圓的弧BC 上任意一點(diǎn).求證:PB+PC= PA.
②定義:在△ABC 所在平面上存在一點(diǎn) P,使它到三角形三頂點(diǎn)的距離之和最小,則稱點(diǎn) P 為△ABC
的費(fèi)馬點(diǎn),此時(shí) PA+PB+PC 的值為△ABC 的費(fèi)馬距離.
(2)知識(shí)遷移
①我們有如下探尋△ABC (其中∠A,∠B,∠C 均小于 120°)的費(fèi)馬點(diǎn)和費(fèi)馬距離的方法:
如圖 2,在△ABC 的外部以 BC 為邊長(zhǎng)作等邊△BCD 及其外接圓,根據(jù)(1)的結(jié)論,易知線段____的長(zhǎng)度即為△ABC 的費(fèi)馬距離.
②在圖 3 中,用不同于圖 2 的方法作出△ABC 的費(fèi)馬點(diǎn) P(要求尺規(guī)作圖).
(3)知識(shí)應(yīng)用
①判斷題(正確的打√,錯(cuò)誤的打×):
ⅰ.任意三角形的費(fèi)馬點(diǎn)有且只有一個(gè)(__________);
ⅱ.任意三角形的費(fèi)馬點(diǎn)一定在三角形的內(nèi)部(__________).
②已知正方形 ABCD,P 是正方形內(nèi)部一點(diǎn),且 PA+PB+PC 的最小值為,求正方形 ABCD 的
邊長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com