證明:任意三個(gè)連續(xù)的奇數(shù)中,中間一個(gè)數(shù)的平方總比另外兩個(gè)數(shù)的積大4.

答案:
解析:

設(shè)三個(gè)連續(xù)奇數(shù)為2n+1,2n-1,2n-3,(2n-1)2-(2n+1)·(2n-3)=4n2-4n+1-4n2+6n-2n+3=4.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊分別用a、b、c表示.
(1)如圖,在△ABC中,∠A=2∠B,且∠A=60度.求證:a2=b(b+c).
精英家教網(wǎng)
(2)如果一個(gè)三角形的一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.第一問中的三角形是一個(gè)特殊的倍角三角形,那么對于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?并證明你的結(jié)論.
精英家教網(wǎng)
(3)試求出一個(gè)倍角三角形的三條邊的長,使這三條邊長恰為三個(gè)連續(xù)的正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•東城區(qū)一模)我們給出如下定義:如果一個(gè)三角形的一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.在△ABC中,∠A、∠B、∠C所對的邊分別為a、b、c.
(1)若∠A=2∠B,且∠A=60°,求證:a2=b(b+c).
(2)如果對于任意的倍角三角形ABC(如圖),其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?請證明你的結(jié)論;
(3)試求出一個(gè)倍角三角形的三條邊的長,使這三條邊長恰為三個(gè)連續(xù)的正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,∠A、∠B、∠C所對的邊分別用a、b、c表示.
(1)如圖,在△ABC中,∠A=2∠B,且∠A=60度.求證:a2=b(b+c).

(2)如果一個(gè)三角形的一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.第一問中的三角形是一個(gè)特殊的倍角三角形,那么對于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?并證明你的結(jié)論.

(3)試求出一個(gè)倍角三角形的三條邊的長,使這三條邊長恰為三個(gè)連續(xù)的正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年北京市豐臺區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

在△ABC中,∠A、∠B、∠C所對的邊分別用a、b、c表示.
(1)如圖,在△ABC中,∠A=2∠B,且∠A=60度.求證:a2=b(b+c).

(2)如果一個(gè)三角形的一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.第一問中的三角形是一個(gè)特殊的倍角三角形,那么對于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?并證明你的結(jié)論.

(3)試求出一個(gè)倍角三角形的三條邊的長,使這三條邊長恰為三個(gè)連續(xù)的正整數(shù).

查看答案和解析>>

同步練習(xí)冊答案