【題目】如圖,點(diǎn)A、B、C在同一直線上,△ABD,△BCE都是等邊三角形.
(1)求證:AE=CD;
(2)若M,N分別是AE,CD的中點(diǎn),試判斷△BMN的形狀,并證明你的結(jié)論.
【答案】(1)答案見解析;(2)△MBN是等邊三角形.
【解析】整體分析:
(1)利用SAS證明△AOC≌△BOD,則有AE=CD;(2)由△ABE≌△DBC,可證△ABM≌△DBN,從而得BM=BN,∠MBN=60°.
(1)證明:∵△ABD、△BCE都是等邊三角形,
∴AB=BD,BC=BE,∠ABD=∠CBE=60°,
∴∠ABD+∠DBE=∠DBE+∠CBE即∠ABE=∠DBC,
∴在△ABE和△DBC中,
△ABE≌△DBC(SAS).
∴AE=CD.
(2)解:△MBN是等邊三角形,理由如下:
∵△ABE≌△DBC,
∴∠BAE=∠BDC.
∵AE=CD,M、N分別是AE、CD的中點(diǎn),
∴AM=DN;
又∵AB=DB.
∴△ABM≌△DBN.
BM=BN.
∠ABM=∠DBN.
∴∠DBM+∠DBN=∠DBM+∠ABM=∠ABD=60°.
∴△MBN是等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題14分)如圖①,已知拋物線(a≠0)與軸交于點(diǎn)A(1,0)和點(diǎn)B(-3,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)設(shè)拋物線的對(duì)稱軸與軸交于點(diǎn)M,問(wèn)在對(duì)稱軸上是否存在點(diǎn)P,使△CMP為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)如圖②,若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE、CE,求四邊形BOCE面積的最大值,并求此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過(guò)點(diǎn)A(3,0),B(-1,0).
(1)求拋物線的解析式;
(2)求拋物線的頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,下列各點(diǎn)中在第四象限的是( )
A. (1,3) B. (0,-3) C. (-3,3) D. (2,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.
(1)如圖1,請(qǐng)你寫出AB與AP所滿足的數(shù)量關(guān)系和位置關(guān)系;
(2)將△EFP沿直線l向左平移到圖2的位置時(shí),EP交AC于點(diǎn)O,連接AP,BO.猜想并寫出BO與AP所滿足的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由;
(3)將△EFP沿直線l繼續(xù)向左平移到圖3的位置時(shí),EP的延長(zhǎng)線交AC的延長(zhǎng)線于點(diǎn)O,連接AP,BO.此時(shí),BO與AP還具有(2)中的數(shù)量關(guān)系和位置關(guān)系嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊空白地,如圖,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.試求這塊空白地的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由方程3x-5=2x-4變形,得3x-2x=-4+5,這是根據(jù)什么變形的( )
A. 合并同類項(xiàng)法則B. 分配律C. 等式的基本性質(zhì)1D. 等式的基本性質(zhì)2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com