【題目】如圖,直線yax+bx軸交于點A4,0),與y軸交于點B0,﹣2),與反比例函數(shù)yx0)的圖象交于點C6,m).

1)求直線和反比例函數(shù)的表達(dá)式;

2)連接OC,在x軸上找一點P,使△OPC是以OC為腰的等腰三角形,請求出點P的坐標(biāo);

3)結(jié)合圖象,請直接寫出不等式ax+b的解集.

【答案】1yx2y;(2)點P1的坐標(biāo)為(,0),點P2的坐標(biāo)為(﹣,0),(12,0);(30x≤6

【解析】

1)根據(jù)點A,B的坐標(biāo),利用待定系數(shù)法即可求出直線AB的函數(shù)表達(dá)式,利用一次函數(shù)圖象上點的坐標(biāo)特征可得出點C的坐標(biāo),由點C的坐標(biāo),利用待定系數(shù)法即可求出反比例函數(shù)的表達(dá)式;

2)過點CCDx軸,垂足為D點,利用勾股定理看求出OC的長,分OCOPCOCP兩種情況考慮:①當(dāng)OPOC時,由OC的長可得出OP的長,進(jìn)而可求出點P的坐標(biāo);②當(dāng)COCP時,利用等腰三角形的性質(zhì)可得出ODPD,結(jié)合OD的長可得出OP的長,進(jìn)而可得出點P的坐標(biāo);

3)觀察圖形,由兩函數(shù)圖象的上下位置關(guān)系,即可求出不等式≥ax+b的解集.

解:(1)將A4,0),B0,﹣2)代入yax+b,得:

,解得:,

∴直線AB的函數(shù)表達(dá)式為yx2

當(dāng)x6時,yx21,

∴點C的坐標(biāo)為(6,1).

C6,1)代入y,得:1,

解得:k6,

∴反比例函數(shù)的表達(dá)式為y

2)過點CCDx軸,垂足為D點,則OD6,CD1,

OC

OC為腰,

∴分兩種情況考慮,如圖1所示:

①當(dāng)OPOC時,∵OC

OP,

∴點P1的坐標(biāo)為(,0),點P2的坐標(biāo)為(﹣,0);

②當(dāng)COCP時,DPDO6,

OP2OD12,

∴點P3的坐標(biāo)為(12,0).

3)觀察函數(shù)圖象,可知:當(dāng)0x6時,反比例函數(shù)y的圖象在直線yx2的上方,

∴不等式≥ax+b的解集為0x≤6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B在反比例函數(shù)y(x0)的圖象上,點C,D在反比例函數(shù)y(k0)的圖象上,ACBDy軸,已知點A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋里裝有分別標(biāo)有漢字、、的四個個球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.

1)若從中任取一個球,球上的漢字剛好是的概率為多少?

2)甲同學(xué)從中任取一球,記下漢字后放回袋中,然后再從袋中任取一球,請用畫樹圖成列表的方法求出甲同學(xué)取出的兩個球上的漢字恰能組成魅力宜昌的概率p;

3)乙同學(xué)從中任取一球,不放回,再從袋中任取一球,請求出乙同學(xué)取出的兩個球上的漢字恰能組成魅力宜昌的概率p,并指出p、p的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+bx+2的圖象與x軸交于點A、B,與y軸交于點C,點A的坐標(biāo)為(﹣4,0),P是拋物線上一點(點P與點A、BC不重合).

1b   ,點B的坐標(biāo)是   

2)連接AC、BC,判斷∠CAB和∠CBA的數(shù)量關(guān)系,并說明理由.

3)設(shè)點M在二次函數(shù)圖象上,以M為圓心,半徑為的圓與直線AC相切,求M點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,過點,垂足為,連接,為線段上一點,且

1)求證:;

2)若,,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABCA逆時針方向旋轉(zhuǎn)40°得到△ADE,點B經(jīng)過的路徑為弧BD,是圖中陰影部分的面積為( 。

A. π﹣6 B. π C. π﹣3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙中,為直徑,、分別切⊙于點、

1)如圖①,若,求的大;

2)如圖②,過點,交于點,交⊙于點,若,求的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】清朝數(shù)學(xué)家梅文鼎的著作《方程論》中有這樣一道題:山田三畝,場地六畝,共折實田四畝七分;又山田五畝,場地三畝,共折實田五畝五分,問每畝山田折實田多少

每畝場地折實田多少

譯文為:假如有山田3畝,場地6畝,其產(chǎn)糧相當(dāng)于實田4.7畝;又山田5畝,場地3畝,其產(chǎn)糧相當(dāng)于實田5.5畝,問每畝山田和每畝場地產(chǎn)糧各相當(dāng)于實田多少畝?請你解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在△ABC和△EDC中,ACCECBCD,∠ACB=∠ECD,ABCE交于F,EDABBC分別交于M、H

1)求證:CFCH;

2)如圖(2),△ABC不動,將△EDC繞點C旋轉(zhuǎn)到∠BCE=時,試判斷四邊形ACDM是什么四邊形?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案