【題目】如圖,在ABCD中,AHCG,且分別交對角線BDHG,連接CHAG,求證:∠CHG=AGH

【答案】證明見解析.

【解析】

根據(jù)題意由AHCG得∠AHD=∠CGB,再由四邊形ABCD是平行四邊形知ADBCADBC,據(jù)此得∠ADH=∠CBG,從而證△ADH≌△CBGAHCG,結(jié)合AHCG知四邊形AHCG是平行四邊形,繼而得CHAG,由平行線的性質(zhì)可得答案.

解:∵AH∥CG,

∴∠AHG=∠CGH,

∴180°∠AHG=180°∠CGH,即∠AHD=∠CGB

四邊形ABCD是平行四邊形,

∴AD∥BC,且AD=BC,

∴∠ADH=∠CBG

∴△ADH≌△CBG(AAS),

∴AH=CG,

∵AH∥CG,

四邊形AHCG是平行四邊形,

∴CH∥AG,

∴∠CHG=∠AGH

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,小明隨父母到某旅游勝地參觀游覽,他在游客中心O處測得景點A在其北偏東72°方向,測得景點B在其南偏東40°方向.小明從游客中心走了2千米到達景點A,已知景點B正好位于景點A的正南方向,求景點A與B之間的距離.(結(jié)果精確到0.1千米)

(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,sin40°≈0.64,tan40°≈0.84)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某自行車廠計劃一周生產(chǎn)自行車1400輛,平均每天生產(chǎn)200輛,但由于種種原因,實際每天生產(chǎn)量與計劃量相比有出入.下表是某周的生產(chǎn)情況(超產(chǎn)記為正、減產(chǎn)記為負):

星期

增減

+5

-2

-4

+13

-10

+16

-9

1)根據(jù)記錄的數(shù)據(jù)可知該廠星期四生產(chǎn)自行車多少輛;

2)根據(jù)記錄的數(shù)據(jù)可知該廠本周實際生產(chǎn)自行車多少輛;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A0,a),B0,b),Cm,b)且(a-42+ =0

1)求C點坐標(biāo)

2)作DE DC,交y軸于E點,EF AED的平分線,且DFE= 90o。 求證:FD平分ADO;

3E y 軸負半軸上運動時,連 EC,點 P AC 延長線上一點,EM 平分∠AEC,且 PMEM,PNx 軸于 N 點,PQ 平分∠APN,交 x 軸于 Q 點,則 E 在運動過程中,的大小是否發(fā)生變化,若不變,求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某建筑物AC上,掛著一宣傳條幅BC,站在點F處,測得條幅頂端B的仰角為300,往條幅方向前行20米到達點E處,測得條幅頂端B的仰角為600,求宣傳條幅BC的長.,結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,,點邊的中點,點邊上一動點(不與點重合),延長交射線于點,連接,

1)求證:四邊形是平行四邊形;

2)填空:

①當(dāng)的值為_______時,四邊形是矩形;

②當(dāng)的值為______時,四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,禁止捕魚期間,某海上稽查隊在某海域巡邏,上午某一時刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時10海里的速度航行,稽查隊員立即乘坐巡邏船以每小時14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏船從出發(fā)到成功攔截捕魚船所用的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一副直角三角板(角度分別為30°、60°、90°和45°、45°、90°),如圖(1)所示,其中一塊三角板的直角邊AC垂直于數(shù)軸,AC的中點過數(shù)軸原點O,AC=8,斜邊AB交數(shù)軸于點G,點G對應(yīng)數(shù)軸上的數(shù)是4;另一塊三角板的直角邊AE交數(shù)軸于點F,斜邊AD交數(shù)軸于點H.

(1)如果△AGH的面積是10,△AHF的面積是8,則點F對應(yīng)的數(shù)軸上的數(shù)是 ,點H對應(yīng)的數(shù)軸上的數(shù)是

(2)如圖(2),設(shè)∠AHF的平分線和∠AGH的平分線交于點M,若∠HAO=a,試用a來表示∠M的大。海▽懗鐾评磉^程)

(3)如圖(2),設(shè)∠AHF的平分線和∠AGH的平分線交于點M,設(shè)∠EFH的平分線和

∠FOC的平分線交于點N,求∠N+∠M的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)有一個均勻的轉(zhuǎn)盤被平均分成6等份,分別標(biāo)有數(shù)字2、34、5、67這六個數(shù)字,轉(zhuǎn)動轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止時,指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字.求:

1)轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)出的數(shù)字大于3的概率是多少?

2)現(xiàn)有兩張分別寫有34的卡片,要隨機轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后記下轉(zhuǎn)出的數(shù)字,與兩張卡片上的數(shù)字分別作為三條線段的長度.這三條線段能構(gòu)成三角形的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案