【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)= . 例如12可以分解成1×12,2×6或3×4,因?yàn)?2﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)= .
(Ⅰ)如果一個(gè)正整數(shù)m是另外一個(gè)正整數(shù)n的平方,我們稱正整數(shù)m是完全平方數(shù).
求證:對(duì)任意一個(gè)完全平方數(shù)m,總有F(m)=1;
(Ⅱ)如果一個(gè)兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為36,那么我們稱這個(gè)數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”;
(Ⅲ)在(2)所得“吉祥數(shù)”中,求F(t)的最大值.
【答案】解:(Ⅰ)證明:對(duì)任意一個(gè)完全平方數(shù)m,設(shè)m=n2(n為正整數(shù)), ∵|n﹣n|=0,
∴n×n是m的最佳分解,
∴對(duì)任意一個(gè)完全平方數(shù)m,總有F(m)= =1;
(Ⅱ)設(shè)交換t的個(gè)位上數(shù)與十位上的數(shù)得到的新數(shù)為t′,則t′=10y+x,
∵t是“吉祥數(shù)”,
∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,
∴y=x+4,
∵1≤x≤y≤9,x,y為自然數(shù),
∴滿足“吉祥數(shù)”的有:15,26,37,48,59;
(Ⅲ)F(15)= ,F(xiàn)(26)= ,F(xiàn)(37)= ,F(xiàn)(48)= = ,F(xiàn)(59)= ,
∵ > > > > ,
∴所有“吉祥數(shù)”中,F(xiàn)(t)的最大值為 .
【解析】(Ⅰ)對(duì)任意一個(gè)完全平方數(shù)m,設(shè)m=n2(n為正整數(shù)),找出m的最佳分解,確定出F(m)的值即可; (Ⅱ)設(shè)交換t的個(gè)位上數(shù)與十位上的數(shù)得到的新數(shù)為t′,則t′=10y+x,根據(jù)“吉祥數(shù)”的定義確定出x與y的關(guān)系式,進(jìn)而求出所求即可;
(Ⅲ)利用“吉祥數(shù)”的定義分別求出各自的值,進(jìn)而確定出F(t)的最大值即可.
【考點(diǎn)精析】掌握因式分解的應(yīng)用是解答本題的根本,需要知道因式分解是整式乘法的逆向變形,可以應(yīng)用與數(shù)字計(jì)算、求值、整除性問(wèn)題、判斷三角形的形狀、解方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長(zhǎng);
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小林沿著筆直的公路靠右勻速行走,發(fā)現(xiàn)每隔5分鐘從背后駛過(guò)一輛101路公交車,每隔3分鐘從迎面駛來(lái)一輛101路公交車.假設(shè)每個(gè)每輛101路公交車行駛速度相同,而且101路公交車總站每隔固定時(shí)間發(fā)一輛車,那么發(fā)車間隔的時(shí)間是( 。
A. 3分鐘 B. 3.75分鐘 C. 4分鐘 D. 5分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AE⊥BC于點(diǎn)E,延長(zhǎng)BC至點(diǎn)F使CF=BE,連結(jié)AF,DE,DF.
(1)求證:四邊形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛客車、一輛貨車和一輛小轎車在一條筆直的公路上朝同一方向勻速行駛,在某一時(shí)刻,客車在前,小轎車在后,貨車在客車與小轎車的正中間,過(guò)了12分鐘,小轎車追上了貨車,又過(guò)了8分鐘,小轎車追上了客車,再過(guò)t分鐘,貨車追上了客車,則t=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上點(diǎn)A、點(diǎn)B對(duì)應(yīng)的數(shù)分別為、6.
、B兩點(diǎn)的距離是______;
當(dāng)時(shí),求出數(shù)軸上點(diǎn)C表示的有理數(shù);
一元一次方解應(yīng)用題:點(diǎn)D以每秒4個(gè)單位長(zhǎng)度的速度從點(diǎn)B出發(fā)沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn)E以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)A出發(fā)沿?cái)?shù)軸向右運(yùn)動(dòng),點(diǎn)F從原點(diǎn)出發(fā)沿?cái)?shù)軸運(yùn)動(dòng),點(diǎn)D、點(diǎn)E、點(diǎn)F同時(shí)出發(fā),t秒后點(diǎn)D、點(diǎn)E相距1個(gè)單位長(zhǎng)度,此時(shí)點(diǎn)D、點(diǎn)F重合,求出點(diǎn)F的速度及方向.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績(jī)被分別繪制成如下兩個(gè)統(tǒng)計(jì)圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績(jī)(環(huán)) | 中位數(shù)(環(huán)) | 眾數(shù)(環(huán)) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | 4.2 |
(1)則表格中a,b的值分別是a=________,b=________;
(2)分別運(yùn)用表中的四個(gè)統(tǒng)計(jì)量,簡(jiǎn)要分析這兩名隊(duì)員的射擊訓(xùn)練成績(jī).若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為半圓O在直徑,AD,BC分別切⊙O于A,B兩點(diǎn),CD切⊙O于點(diǎn)E,連接OD,OC,下列結(jié)論:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2 , ④OD:OC=DE:EC,⑤OD2=DECD,正確的有( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合.
(3) 點(diǎn)A,B,C開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)
(4) 請(qǐng)問(wèn):3BC-2AB的值是否隨著時(shí)間t的變化而改變? 若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com