【題目】如圖,已知等邊三角形中,點(diǎn),,分別為各邊中點(diǎn),為直線上一動(dòng)點(diǎn),為等邊三角形(點(diǎn)的位置改變時(shí),也隨之整體移動(dòng)).
(1)如圖1,當(dāng)點(diǎn)在點(diǎn)左側(cè)時(shí),請(qǐng)判斷與有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出結(jié)論,不必證明或說(shuō)明理由;
(2)如圖2,當(dāng)點(diǎn)在上時(shí),其它條件不變,(1)的結(jié)論中與的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)利用圖2證明;若不成立,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)在點(diǎn)右側(cè)時(shí),請(qǐng)你在圖3中畫(huà)出相應(yīng)的圖形,并判斷(1)的結(jié)論中與的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)直接寫(xiě)出結(jié)論,不必證明或說(shuō)明理由.(提示:連接、、.可證、、、均為等邊三角形).
【答案】(1),(2)成立證明見(jiàn)解析;(3)結(jié)論仍成立.
【解析】
(1)連接DE,DF,得出△DFE是等邊三角形,那么∠DEF=∠DFM=60°,DE=DF,再利用SAS證明△MDF和△EDN全等,由此可得出EN=MF.
(2)(3)證法同(1)都要證明△MDF和△EDN全等,證明過(guò)程中都要作出三角形的三條中位線,然后根據(jù)三條中位線分成的小等邊三角形的邊和角相等來(lái)得出兩三角形全等的條件,因此結(jié)論仍然成立.
解:(1)EN=MF.理由如下:連接DE,DF,
∵△ABC是等邊三角形,∴AB=AC=BC.
又∵D,E,F是三邊的中點(diǎn),∴EF=DF=BF.
∴∠DEF=∠DFM=60°,
又△MDN為等邊三角形,∴∠MDN=60°,
∠MDN+∠NDF=∠FDE+∠NDF,
∴∠MDF=∠NDE,
在△EDN和△MDF中,
∴△EDN≌△MDF(SAS),
∴EN=MF.
(2)如圖②,EN=MF仍然成立.證明如下:連接DF,NF,
∵△ABC是等邊三角形,∴AB=AC=BC.
又∵D,E,F是三邊的中點(diǎn),∴EF=DF=BF.
∵∠BDM+∠MDF=60°,∠FDN+∠MDF=60°,
∴∠BDM=∠FDN,
在△DBM和△DFN中,
∴△DBM≌△DFN,
∴BM=FN,∠DFN=∠FDB=60°,
∴NF∥BD,
∵E,F分別為邊AC,BC的中點(diǎn),
∴EF是△ABC的中位線,
∴EF∥BD,
∴F在直線NE上,
∵BF=EF,
∴MF=EN.
(3)如圖③,MF=NE的結(jié)論仍然成立.
連接DF、DE,
由(2)知DE=DF,∠NDE=∠FDM,DN=DM,
在△DNE和△DMF中,
∴△DNE≌△DMF,
∴MF=NE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,和是兩塊可以完全重合的三角板,,. 在圖1所示的狀態(tài)下,固定不動(dòng),將沿直線向左平移.
(1)當(dāng)移到圖2位置時(shí)連接位綱連接、,求證:;
(2)如圖3,在上述平移過(guò)程中,當(dāng)點(diǎn)與的中點(diǎn)重合時(shí),直線與AD有什么位置關(guān)系,請(qǐng)寫(xiě)出證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車租賃公司擁有某種型號(hào)的汽車100輛.公司在經(jīng)營(yíng)中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關(guān)系:
x(元) | 3000 | 3200 | 3500 | 4000 |
y(輛) | 100 | 96 | 90 | 80 |
(1)觀察表格,用所學(xué)過(guò)的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí),求按照表格呈現(xiàn)的規(guī)律,每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.
(2)已知租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.用含x(x≥3000)的代數(shù)式填表:
租出的車輛數(shù)(輛) | ________ | 未租出的車輛數(shù)(輛) | ________ |
租出每輛車的月收益(元) | ________ | 所有未租出的車輛每月的維護(hù)費(fèi)(元) | ________ |
(3)若你是該公司的經(jīng)理,你會(huì)將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了對(duì)一棵傾斜的古杉樹(shù)AB進(jìn)行保護(hù),需測(cè)量其長(zhǎng)度.如圖,在地面上選取一點(diǎn)C,測(cè)得∠ACB=45°,AC=21m,∠BAC=53°,求這顆古杉樹(shù)AB的長(zhǎng)度.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,MN是⊙O的直徑,MN=4,點(diǎn)A在⊙O上,∠AMN=30°,B為的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn).
(1)利用尺規(guī)作圖,確定當(dāng)PA+PB最小時(shí)P點(diǎn)的位置(不寫(xiě)作法,但要保留作圖痕跡).
(2)求PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,小剛同學(xué)按如下步驟作圖:
(1)以B為圓心,BC長(zhǎng)為半徑畫(huà)弧,交AB于點(diǎn)E
(2)分別以點(diǎn)C.E為圓心,大于CE的長(zhǎng)為半徑畫(huà)弧,兩弧在△ABC內(nèi)相交于點(diǎn)P
(3)連接BP,并延長(zhǎng)交AC于點(diǎn)D
(4)連接DE
根據(jù)以上作圖步驟,有下列結(jié)論:①BD平分∠ABC; ②AD+DE = AC;③點(diǎn)P與點(diǎn)D關(guān)于直線CE對(duì)稱; ④△BCD與△BED關(guān)于直線BD對(duì)稱.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=(),將線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到線段BD。
(1)如圖1,直接寫(xiě)出∠ABD的大。ㄓ煤的式子表示);
(2)如圖2,∠BCE=150°,∠ABE=60°,判斷△ABE的形狀并加以證明;
(3)在(2)的條件下,連結(jié)DE,若∠DEC=45°,求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC的邊長(zhǎng)為2,過(guò)點(diǎn)B的直線且△ABC與△A′BC′關(guān)于直線l對(duì)稱,D為線段BC′上一動(dòng)點(diǎn),則AD+CD的最小值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司推出了甲、乙兩種新品飲料,它們都由A、B、C三種溶液組成,只是甲種飲料每瓶裝有200克A溶液,200克B溶液,100克C溶液;乙種飲料每瓶裝有100克A溶液,100克B溶液,300克C溶液,甲、乙兩種飲料每瓶成本價(jià)均為瓶中A、B、C三種溶液的成本價(jià)之和.已知C種溶液每一百克的成本價(jià)為1元,乙種飲料每瓶售價(jià)為10元,利潤(rùn)率為,甲種飲料每瓶的利潤(rùn)率為20%,求這兩種飲料的銷售利潤(rùn)率為24%時(shí),該公司銷售甲、乙兩種飲料的數(shù)量之比是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com