如圖,△ABC內接于⊙O,AB為⊙O的直徑,點D在AB的延長線上,∠A=∠D=30°.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)證明:△AOC≌△DBC.
(1)DC是⊙O的切線.理由如下:
∵∠A=∠D=30°,
∴AC=CD,∠ACD=120°.
∵OA=OC,
∴∠OCA=∠A=30°,
∴∠OCD=90°,
∴DC是⊙O的切線.

(2)證明:連接BC,
∵AB是直徑,
∴∠ACB=90°,
∴∠BCD=120°-90°=30°=∠D,
∴BC=BD.
∵∠CBO=2∠D=60°,OB=OC,
∴△OBC是等邊三角形,則BC=OC,
∴△AOC≌△DBC.(SSS)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

爆炸區(qū)50m內是危險區(qū),一人在離爆炸中心O點30m的A處(如圖),這人沿射線______的方向離開最快,離開______m無危險.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在△ABC中,∠C=90°,∠B=30°,O為AB上一點,AO=2,⊙O的半徑為
9
5
,⊙O與AC的位置關系是(  )
A.相交B.相離C.相切D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀下面的材料:
如圖(1),在以AB為直徑的半圓O內有一點P,AP、BP的延長線分別交半圓O于點C、D.
求證:AP•AC+BP•BD=AB2
證明:連接AD、BC,過P作PM⊥AB,則∠ADB=∠AMP=90°,
∴點D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
當點P在半圓周上時,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如圖(2)當點P在半圓周外時,結論AP•AC+BP•BD=AB2是否成立?為什么?
(2)如圖(3)當點P在切線BE外側時,你能得到什么結論?將你得到的結論寫出來.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖一,在△ABC中,分別以AB,AC為直徑在△ABC外作半圓O1和半圓O2,其中O1和O2分別為兩個半圓的圓心.F是邊BC的中點,點D和點E分別為兩個半圓圓弧的中點.
(1)連接O1F,O1D,DF,O2F,O2E,EF,證明:△DO1F≌△FO2E;
(2)如圖二,過點A分別作半圓O1和半圓O2的切線,交BD的延長線和CE的延長線于點P和點Q,連接PQ,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;
(3)如圖三,過點A作半圓O2的切線,交CE的延長線于點Q,過點Q作直線FA的垂線,交BD的延長線于點P,連接PA.證明:PA是半圓O1的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在兩個同心圓中,大圓的弦AB切小圓于C點,AB=12cm.求兩個圓之間的圓環(huán)面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知⊙O的直徑等于12cm,圓心O到直線l的距離為5cm,則直線l與⊙O的交點個數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,圓心O在邊長為
2
的正方形ABCD的對角線BD上,⊙O過B點且與AD、DC邊均相切,則⊙O的半徑是(  )
A.2(
2
-1)
B.2(
2
+1)
C.2
2
-1
D.2
2
+1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知正方形紙片ABCD的邊長為4,⊙O的半徑為1,圓心在正方形的中心上,將紙片按圖示方式折疊,使EA′恰好與⊙O相切于點A′,延長FA′交CD邊于點G,則A′G的長是______.

查看答案和解析>>

同步練習冊答案