【題目】如圖,在等邊三角形中,,點(diǎn)是邊上的任意一點(diǎn)(點(diǎn)可以與點(diǎn)重合,但不與點(diǎn)重合).過點(diǎn)作,垂足為;點(diǎn)作,垂足為;過點(diǎn)作,垂足為.設(shè),.
(1)用含的代數(shù)式表示,并注明的取值范圍;
(2)當(dāng)的長等于多少時,點(diǎn)和點(diǎn)重合?
【答案】(1);(2).
【解析】
(1)可在直角三角形BPE中,用x表示出BE的長;同理在直角三角形ECF中,用EC表示出CF的長;同理在直角三角形AFQ中,用AF表示出AQ的長;而AQ=y,由此可得出y,x的函數(shù)關(guān)系式.
(2)當(dāng)P,Q重合時,y+x=2,然后聯(lián)立(1)的函數(shù)式即可求出x的值即BP的長.
解:(1)∵△ABC為等邊三角形
∴∠A=∠B=∠C=60°,AB=BC=CA=2
在中,
,
,
在中,
,
,
,
,
中,,
,
,
∵點(diǎn)是邊上的任意一點(diǎn)(點(diǎn)可以與點(diǎn)重合,但不與點(diǎn)重合),
∴的取值范圍:0<≤2,
故;
(2)當(dāng)、重合時,有AQ+BP=AB=2,即,
解得
故的長為時,、重合.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-4x+3.
(1)用配方法求其圖象的頂點(diǎn)C的坐標(biāo),并描述該函數(shù)的函數(shù)值隨自變量的增減而變化的情況;
(2)求函數(shù)圖象與x軸的交點(diǎn)A,B的坐標(biāo),及△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2x+m﹣1=0有兩個實(shí)數(shù)根x1,x2.
(1)求m的取值范圍;
(2)當(dāng)x12+x22=6x1x2時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料:
我們可以通過以下方法求代數(shù)式的最小值.
,
∵≥0,
∴當(dāng)時, 有最小值.
請根據(jù)上述方法,解答下列問題:
(1),則的值是______;
(2)求證:無論x取何值,代數(shù)式的值都是正數(shù);
(3)若代數(shù)式的最小值為2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解,并解決問題.
分式方程的增根:解分式方程時可能會產(chǎn)生增根,原因是什么呢?事實(shí)上,解分式方程時產(chǎn)生增根,主要是在去分母這一步造成的.根據(jù)等式的基本性質(zhì)2:等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等.但是,當(dāng)?shù)仁絻蛇呁?/span>0時,就會出現(xiàn)的特殊情況.因此,解方程時,方程左右兩邊不能同乘0.而去分母時會在方程左右兩邊同乘公分母,此時無法知道所乘的公分母的值是否為0,于是,未知數(shù)的取值范圍可能就擴(kuò)大了.如果去分母后得到的整式方程的根使所乘的公分母值為0,此根即為增根,增根是整式方程的根,但不是原分式方程的根.所以解分式方程必須驗(yàn)根.請根據(jù)閱讀材料解決問題:
(1)若解分式方程時產(chǎn)生了增根,這個增根是 ;
(2)小明認(rèn)為解分式方程時,不會產(chǎn)生增根,請你直接寫出原因;
(3)解方程
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是邊長為4的等邊三角形,BC在x軸上,點(diǎn)D為BC的中點(diǎn),點(diǎn)A在第一象限內(nèi),AB與y軸的正半軸交與點(diǎn)E,已知點(diǎn)B(﹣1,0).
(1)點(diǎn)A的坐標(biāo): ,點(diǎn)E的坐標(biāo): ;
(2)若二次函數(shù)y=﹣x2+bx+c過點(diǎn)A、E,求此二次函數(shù)的解析式;
(3)P是線段AC上的一個動點(diǎn)(P與點(diǎn)A、C不重合)連結(jié)PB、PD,設(shè)L是△PBD的周長,當(dāng)L取最小值時。
求:①點(diǎn)P的坐標(biāo)
②判斷此時點(diǎn)P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為4,B是⊙O外一點(diǎn),連接OB,且OB=6,過點(diǎn)B作⊙O的切線BD,切點(diǎn)為D,延長BO交⊙O于點(diǎn)A,過點(diǎn)A作切線BD的垂線,垂足為C.
(1)求證:AD平分∠BAC;
(2)求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的頂點(diǎn)A、C、D都在⊙O上,AB與⊙O相切于點(diǎn)A,BC與⊙O交于點(diǎn)E,設(shè)∠OCD=α,∠BAD=β.
(1)求證:AB=AE;
(2)試探究α與β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一條直線過點(diǎn),且與拋物線交于A、B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)是-2.
⑴求這條直線的函數(shù)關(guān)系式及點(diǎn)B的坐標(biāo) ;
⑵在軸上是否存在點(diǎn)C,使得ABC是直角三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請說明理由;
⑶.過線段AB上一點(diǎn)P,作PM∥軸,交拋物線于點(diǎn)M,點(diǎn)M在第一象限;點(diǎn),當(dāng)點(diǎn)M的橫坐標(biāo)為何值時,MN+3MP的長度最大?最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com