【題目】如圖,在中,,以AB為直徑的圓交AC于點(diǎn)D,E是BC的中點(diǎn),連接DE.
(1)求證:DE是的切線;
(2)設(shè)的半徑為r,證明;
(3)若,求AD之長.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
(1)由E為BC的中點(diǎn),O為AB的中點(diǎn),得到OE是△ABC的中位線,進(jìn)而得到OE∥AC.再由平行線的性質(zhì)及等腰三角形的性質(zhì)可證∠1=∠2,即可得到△ODE≌△OBE,根據(jù)全等三角形對應(yīng)角相等即可得到結(jié)論;
(2)證明△ADB∽△OBE,由相似三角形對應(yīng)邊成比例即可得到結(jié)論;
(3)根據(jù)切線長定理得到BE=DE=4.
由OE∥AC,得到∠4=∠C,則,解直角三角形OBE可得OB,OE的長,代入(2)中結(jié)論,即可得出AD的長.
(1)∵AB⊥BC,∴∠OBC=90°.
∵E為BC的中點(diǎn),O為AB的中點(diǎn),
,
∴∠1=∠ODA,∠2=∠A.
∵OA=OD,∴∠A=∠ODA,∴∠1=∠2.
∵OD=OB,∠1=∠2,OE=OE,
∴△ODE≌△OBE,
∴∠ODE=∠OBE=90°,
∴DE為的切線;
(2)∵∠2=∠A,,
,
,
,
因此,;
(3)∵DE、BE是⊙O的切線,∴BE=DE=4.
又∵,
,
,
∴.
設(shè)OB=3x,則OE=5x,BE=4x.
∵BE=4,∴x=1,∴OB=3,OE=5.
又由(2)得:,
即:,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC內(nèi)有一點(diǎn)D,AD=5,BD=6,CD=4,將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使AB與AC重合,點(diǎn)D旋轉(zhuǎn)到點(diǎn)E,則∠CDE的正切值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象與函數(shù)的圖象相交于點(diǎn)A,并與軸交于點(diǎn)C,S△AOC=15.點(diǎn)D是線段AC上一點(diǎn),CD:AC=2:3.
(1)求的值;
(2)求點(diǎn)D的坐標(biāo);
(3)根據(jù)圖象,直接寫出當(dāng)時(shí)不等式的的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點(diǎn)A,C的坐標(biāo)分別為A(﹣3,0),C(1,0),tan∠BAC=.
(1)求過點(diǎn)A,B的直線的函數(shù)表達(dá)式;
(2)在x軸上找一點(diǎn)D,連接BD,使得△ADB與△ABC相似(不包括全等),并求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,如P,Q分別是AB和AD上的動(dòng)點(diǎn),連接PQ,設(shè)AP=DQ=m,問是否存在這樣的m使得△APQ與△ADB相似?如存在,請求出的m值;如不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店的員工與老板齊心協(xié)力,在2019年的經(jīng)營中,每月的利潤都在不斷增加.該服裝店的老板每季度都讓員工總結(jié)經(jīng)驗(yàn)與不足,下面是策劃師與銷售品牌服裝的員工在第二季度總結(jié)的一部分.
策劃師的發(fā)言:第四月的利潤為50萬元,從第四月開始,第二季度的月增長率不變,第二季度的總利潤為182萬元.
銷售品牌的員工發(fā)言:銷售的品牌服裝在四月份中,進(jìn)價(jià)為100元,售價(jià)為140元,每周銷售60件,由于該服裝進(jìn)貨量少,因此,采用漲價(jià)銷售,每件漲1元時(shí),平均每周少售2件,每周盈利2250元.
請根據(jù)總結(jié)解答相關(guān)的問題:
(1)求第二季度月增長率;
(2)品牌服裝每周盈利2250元時(shí),每件售價(jià)應(yīng)該是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)A在第一象限,軸于B點(diǎn),連結(jié),將折疊,使點(diǎn)落在x軸上,折痕交邊于D點(diǎn),交斜邊于E點(diǎn),(1)若A點(diǎn)的坐標(biāo)為,當(dāng)時(shí),點(diǎn)的坐標(biāo)是______;(2)若與原點(diǎn)O重合,,雙曲線的圖象恰好經(jīng)過D,E兩點(diǎn)(如圖2),則____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)M(n,﹣n )在第二象限,過點(diǎn)M的直線y=kx+b(0<k<1)分別交x軸、y軸于點(diǎn)A,B,過點(diǎn)M作MN⊥x軸于點(diǎn)N,則下列點(diǎn)在線段AN的是( 。
A. ((k﹣1)n,0) B. ((k+)n,0)) C. (,0) D. ((k+1)n,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高考英語聽力測試期間,需要杜絕考點(diǎn)周圍的噪音。如圖,點(diǎn)A是某市一高考考點(diǎn),在位于A考點(diǎn)南偏西15°方向距離125米的點(diǎn)處有一消防隊(duì)。在聽力考試期間,消防隊(duì)突然接到報(bào)警電話,告知在位于C點(diǎn)北偏東75°方向的F點(diǎn)處突發(fā)火災(zāi),消防隊(duì)必須立即趕往救火。已知消防車的警報(bào)聲傳播半徑為100米,若消防車的警報(bào)聲對聽力測試造成影響,則消防車必須改道行駛。試問:消防車是否需要改道行駛?說明理由.(取1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的半圓O內(nèi)有一條弦AC,點(diǎn)E是弦AC的中點(diǎn),連接BE,并延長交半圓O于點(diǎn)D,若OB=2,OE=1,則∠CDE的度數(shù)是_______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com