【題目】如圖,在四邊形ABCD中,AC平分∠BAD,∠ABC90°,ACAD2,MN分別為AC、CD的中點(diǎn),連接BM、MN、BN

(1)求證:BMMA

(2)若∠BAD60°,求BN的長;

(3)當(dāng)∠BAD   °時,BN1(直接填空)

【答案】(1)證明見解析;(2)BN(3)40°.

【解析】

1)根據(jù)直角三角形斜邊中線定理得BM=AC,由此即可證明.
2)首先證明∠BMN=90°,根據(jù)BN2=BM2+MN2即可解決問題;
3)根據(jù)等邊三角形的判定和性質(zhì)定理即可得到結(jié)論.

解:(1)證明:在CAD中,

MN分別是AC、CD的中點(diǎn),

MNADMNAD,

Rt△ABC中,∵MAC中點(diǎn),

BMAC

ACAD,

MNBM

(2)∵∠BAD60°,AC平分∠BAD

∴∠BAC=∠DAC30°,

(1)可知,BMACAMMC

∴∠BMC=∠BAM+ABM2BAM60°,

MNAD,

∴∠NMC=∠DAC30°

∴∠BMN=∠BMC+NMC90°

BN2BM2+MN2,

(1)可知MNBM1,

BN;

(3)∵∠BAD40°,AC平分∠BAD,

∴∠BAC=∠DAC20°,

(1)可知,BMACAMMC,

∴∠BMC=∠BAM+ABM2BAM40°,

MNAD

∴∠NMC=∠DAC20°,

∴∠BMN=∠BMC+NMC60°

(1)可知MNBM1

BN1

故答案為:40°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線上部分點(diǎn)的橫坐標(biāo),縱坐標(biāo)的對應(yīng)值如下表:

小聰觀察上表,得出下面結(jié)論:①拋物線與x軸的一個交點(diǎn)為(3,0); ②函數(shù)的最大值為6;③拋物線的對稱軸是;④在對稱軸左側(cè),yx增大而增大.其中正確有(

A. ①②B. ①③C. ①②③D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在奉賢創(chuàng)建文明城區(qū)的活動中,有兩段長度相等的彩色道磚鋪設(shè)任務(wù),分別交給甲、乙兩個施工隊(duì)同時進(jìn)行施工.如圖是反映所鋪設(shè)彩色道磚的長度y(米)與施工時間x(時)之間關(guān)系的部分圖象.請解答下列問題:

1)求乙隊(duì)在2≤x≤6的時段內(nèi),yx之間的函數(shù)關(guān)系式;

2)如果甲隊(duì)施工速度不變,乙隊(duì)在開挖6小時后,施工速度增加到12/時,結(jié)果兩隊(duì)同時完成了任務(wù).求甲隊(duì)從開始施工到完工所鋪設(shè)的彩色道磚的長度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,AC是∠BAD的角平分線.

1)求證:△ABC≌△ADC

2)若∠BCD60°,AC=BC,求∠ADB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的拋物線是二次函數(shù)yax2+bx+c(a0)的圖象,則下列結(jié)論:b+2a0拋物線與x軸的另一個交點(diǎn)為(4,0);a+cb;(1,y1),(,y2)是拋物線上的兩點(diǎn),則y1y2.其中正確的結(jié)論有(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線x軸交于A,B兩點(diǎn)(OAOB),與y軸交于點(diǎn)C

1)求點(diǎn)A,B,C的坐標(biāo);

2)點(diǎn)P從點(diǎn)O出發(fā),以每秒2個單位長度的速度向點(diǎn)B運(yùn)動,同時點(diǎn)E也從點(diǎn)O出發(fā),以每秒1個單位長度的速度向點(diǎn)C運(yùn)動,設(shè)點(diǎn)P的運(yùn)動時間為t秒(0t2).

過點(diǎn)Ex軸的平行線,與BC相交于點(diǎn)D(如圖所示),當(dāng)t為何值時,的值最小,求出這個最小值并寫出此時點(diǎn)E,P的坐標(biāo);

在滿足的條件下,拋物線的對稱軸上是否存在點(diǎn)F,使△EFP為直角三角形?若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是邊長為2的正方形,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過AE兩點(diǎn),且點(diǎn)E的坐標(biāo)為(﹣0),以0C為直徑作半圓,圓心為D

1)求二次函數(shù)的解析式;

2)求證:直線BE是⊙D的切線;

3)若直線BE與拋物線的對稱軸交點(diǎn)為P,M是線段CB上的一個動點(diǎn)(點(diǎn)M與點(diǎn)B,C不重合),過點(diǎn)MMNBEx軸與點(diǎn)N,連結(jié)PM,PN,設(shè)CM的長為t,PMN的面積為S,求St的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.S是否存在著最大值?若存在,求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計(jì)共抽查了   名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)該校共有1500名學(xué)生,請估計(jì)該校最喜歡用“微信”進(jìn)行溝通的學(xué)生有多少名?

(4)某天甲、乙兩名同學(xué)都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,菱形ABCD位于平面直角坐標(biāo)系中,拋物線yax2+bx+c經(jīng)過菱形的三個頂點(diǎn)AB、C,已知A(﹣30)、B0,﹣4).

1)求拋物線解析式;

2)線段BD上有一動點(diǎn)E,過點(diǎn)Ey軸的平行線,交BC于點(diǎn)F,若SBOD4SEBF,求點(diǎn)E的坐標(biāo);

3)拋物線的對稱軸上是否存在點(diǎn)P,使△BPD是以BD為斜邊的直角三角形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案