(8分)如圖,AB、CD為⊙O內(nèi)兩條相交的弦,交點(diǎn)為E,且AB=CD。則以下結(jié)論中:①AE=EC ②AD=BC  ③BE=EC  ④AD∥BC, 正確的有          。試證明你的結(jié)論。

 

【答案】

(1)正確的有 ③ ④   (2)見解析

【解析】

試題分析:

證明:

因?yàn)锳B=CD

弧AB=弧CD

弧AC=弧BD

故∠ABC=∠ADC=∠BAD=∠BCD

故 BE=EC、AD∥BC

考點(diǎn):圓周角和弧的性質(zhì)

點(diǎn)評(píng):此類試題需要考生對(duì)弧的基本性質(zhì)和圓周所對(duì)應(yīng)的角熟練把握

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北石首市城區(qū)初中七年級(jí)下學(xué)期期中聯(lián)考數(shù)學(xué)卷 題型:解答題

(本題4分)如圖,ABCD,∠A=60°∠C=∠E,求∠C。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省揚(yáng)州市武堅(jiān)中學(xué)九年級(jí)第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本題滿分10分)
如圖,AB是⊙O的直徑,點(diǎn)C是BA延長(zhǎng)線上一點(diǎn),CA=1,CD切⊙O于D點(diǎn),弦DE∥CB,Q是AB上一動(dòng)點(diǎn),當(dāng)DQ⊥AB時(shí)Q恰好為OA中點(diǎn).

【小題1】 (1)求⊙O的半徑R.
【小題2】(2) 當(dāng)點(diǎn) Q從點(diǎn)A向點(diǎn)B運(yùn)動(dòng)的過(guò)程中,圖中陰影部分的面積是否發(fā)生變化,若發(fā)生變化,請(qǐng)你說(shuō)明理由;若不發(fā)生變化,請(qǐng)你求出陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年高級(jí)中等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)卷(湖北黃岡) 題型:解答題

(本題滿分10分,每小題5分)

如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)M,AE切⊙O于點(diǎn)A,交BC的延長(zhǎng)線于點(diǎn)E,連接AC.

(1)若∠B=30°,AB=2,求CD的長(zhǎng);

(2)求證:AE2=EB·EC.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年高級(jí)中等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)卷(浙江杭州) 題型:解答題

(本題滿分10分)如圖,AB是⊙O的直徑, PAB延長(zhǎng)線上任意一點(diǎn),C為半圓ACB的中點(diǎn),PD切⊙O于點(diǎn)D,連結(jié)CDAB于點(diǎn)E

求證:(1)PD=PE;

(2)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆度臨沂市費(fèi)縣七年級(jí)第二學(xué)期期末檢測(cè)數(shù)學(xué) 題型:解答題

(11·永州)(本題滿分10分)如圖,AB是半圓O的直徑,點(diǎn)C是⊙O上一點(diǎn)

(不與A,B重合),連接AC,BC,過(guò)點(diǎn)O作OD∥AC交BC于點(diǎn)D,在OD的延長(zhǎng)線上

取一點(diǎn)E,連接EB,使∠OEB=∠ABC.

⑴ 求證:BE是⊙O的切線;

⑵ 若OA=10,BC=16,求BE的長(zhǎng).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案