【題目】已知ABC三邊分別為、、,根據下列條件能判斷ABC為直角三角形的有

①∠A=B+C;②∠A:∠B:∠C=345;③;④,

A.1B.2C.3D.4

【答案】C

【解析】

根據直角三角形內角和定理、勾股定理的逆定理依次判斷即可.

∠A=∠B+∠C,∠A+∠B+∠C=180°,

∠B+∠C=90°,

∴①能判斷△ABC為直角三角形;

設∠A=3x,∠B=4x,∠C=5x

3x+4x+5x=180°,

x=15°,

∴∠C=75°

△ABC不是直角三角形,②錯誤;

a=3x,b=4x,c=5x

,,

,

ABC是直角三角形,故③正確;

,,,

△ABC是直角三角形,故④正確;

正確的有:①、③、④,

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+6x軸于A﹣2,0),B3,0)兩點,交y軸于點C.

1)求a,b的值;

2)連接BC,點P為第一象限拋物線上一點,過點AADx軸,過點PPDBC于交直線AD于點D,設點P的橫坐標為t,AD長為d,求dt的函數(shù)關系式(請求出自變量t的取值范圍);

3)在(2)的條件下,DPBC交于點F,過點DDEABBC于點E,點Q為直線DP上方拋物線上一點,連接APPC,若DP=CE,QPC=APD時,求點Q坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從下列算式:;26÷23=4; -12018=1; (-2=3;aaa2中隨機抽取一個,運算結果正確的概率是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,ABBC,∠B60°,EBC邊上一點.

1)如圖1,若EBC的中點,∠AED60°,求證:CECD;

2)如圖2,若∠EAD60°,求證:△AED是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象開口向上,圖象經過點,且與軸相交于負半軸

問:給出四個結論:;②;③;④.寫出其中正確結論的序號(答對得分,少選、錯選均不得分)

問:給出四個結論:①abc0;2a+b0a+c=1;a1.寫出其中正確結論的序號.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,點PAC邊上的一點,延長BP至點D,使得AD=AP,當ADAB時,過DDEACE,AB-BC=4AC=8,則ABP面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)通過配方,寫出其對稱軸,頂點坐標;

(2)分別求出其與軸、軸的交點坐標;

(3)畫出函數(shù)的大致圖象,結合圖象說明,當取何值時,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】莫小貝在圖1中畫出△ABC,其頂點A,B,C都是格點同時構造正方形BDEF,使它的頂點都在格點上且它的邊DE,EF分別經過點C,A,她借助此圖求出了△ABC 的面積.

(1)莫小貝所畫的△ABC 的三邊長分別是AB=_______,BC=______,AC=______;△ABC 的面積為________.

(2)已知△ABC ,AB=,BC=,AC=,請你根據莫小貝的思路,在圖2中畫出△ABC ,并直接寫出△ABC的面積_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于反比例函數(shù)y=(k≠0),下列所給的四個結論中,正確的是( 。

A. 若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上

B. k>0時,yx的增大而減小

C. 過圖象上任一點Px軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為k

D. 反比例函數(shù)的圖象關于直線y=﹣x成軸對稱

查看答案和解析>>

同步練習冊答案