【題目】已知:AB、CD 是圓O 的兩條直徑,且∠AOD =α(0° < α < 90°),點(diǎn)P是扇形AOD內(nèi)任意一點(diǎn).點(diǎn)P將AB、CD所在直線依次輪流作為對(duì)稱軸翻折,將點(diǎn)P關(guān)于AB對(duì)稱的點(diǎn)記為點(diǎn)P1 ,點(diǎn)P1關(guān)CD 對(duì)稱的點(diǎn)記為點(diǎn)P2,點(diǎn) P2 關(guān)于AB 對(duì)稱的點(diǎn)記為點(diǎn)P3,….
(1)根據(jù)所給圖中點(diǎn)P 的位置,分別畫出點(diǎn) P 1、P 1;(不寫作圖步驟,但要保留作圖痕跡)
(2)分別聯(lián)結(jié)OP、OP1、OP2,那么線段OP、OP1、OP2 之間的數(shù)量關(guān)系是:OP OP1 OP2(填空,不要求寫出過(guò)程);
(3)由(1)、(2)可知,點(diǎn) P 繞點(diǎn)O旋轉(zhuǎn)可以到達(dá)點(diǎn)P2的位置,如果 α=60°,OP= a,求線段 OP順時(shí)針旋轉(zhuǎn)到OP2 過(guò)程中掃過(guò)的面積;
(4)在 α 取某些特定值的時(shí)候,如果按照這樣的方式翻折,總能得到一點(diǎn)Pn與點(diǎn)P 重合, 求當(dāng)n =12,點(diǎn) P12 與點(diǎn)P 第一次重合時(shí) α 的值.(直接寫出結(jié)果,不要求寫出過(guò)程)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點(diǎn)F.
(1)請(qǐng)你判斷并寫出FE與FD之間的數(shù)量關(guān)系(不需證明);
(2)如圖②,如果∠ACB不是直角,其他條件不變,那么在(1)中所得的結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌T恤專營(yíng)批發(fā)店的T恤衫在進(jìn)價(jià)基礎(chǔ)上加價(jià)m%銷售,每月銷售額9萬(wàn)元,該店每月固定支出1.7萬(wàn)元,進(jìn)貨時(shí)還需付進(jìn)價(jià)5%的其它費(fèi)用.
(1)為保證每月有1萬(wàn)元的利潤(rùn),m的最小值是多少?(月利潤(rùn)=總銷售額-總進(jìn)價(jià)-固定支
出-其它費(fèi)用)
(2)經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),售價(jià)每降低1%,銷售量將提高6%,該店決定自下月起降價(jià)以促進(jìn)銷售,已知每件T恤原銷售價(jià)為60元,問(wèn):在m。1)中的最小值且所進(jìn)T恤當(dāng)月能夠全部銷售完的情況下,銷售價(jià)調(diào)整為多少時(shí)能獲得最大利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校120名學(xué)生某一周用于閱讀課外書籍的時(shí)間的頻率分布直方圖如圖所示.其中閱讀時(shí)間是8~10小時(shí)的頻數(shù)和頻率分別是( )
A. 15和0.125 B. 15和0.25 C. 30和0.125 D. 30和0.25
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探索代數(shù)式與代數(shù)式的關(guān)系.
(1)當(dāng),時(shí),分別計(jì)算兩個(gè)代數(shù)式的值.
(2)當(dāng),時(shí),分別計(jì)算兩個(gè)代數(shù)式的值.
(3)你發(fā)現(xiàn)了什么規(guī)律?
(4)利用你發(fā)現(xiàn)的規(guī)律計(jì)算:20182-2×2018×2019+20192.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:
(2)計(jì)算:(2+)(2﹣)+÷+
(3)在ABCD中,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在CD上且DF=BE,連接AF,BF.
①求證:四邊形BFDE是矩形;
②若CF=6,BF=8,AF平分∠DAB,則DF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y1=k1x+b的圖象與x軸、y軸分別交于A、B兩點(diǎn),與反比例函數(shù)y2=的圖象分別交于C、D兩點(diǎn),點(diǎn)D的坐標(biāo)為(2,-3),點(diǎn)B是線段AD的中點(diǎn).則不等式 k1x+b —>0的解集是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,BE、CE分別平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.則ABCD的周長(zhǎng)為_____,面積為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com