精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系xOy中,拋物線x軸交于A,B兩點(點A在點B的左側),交y軸于點C,經過B,C兩點的直線為.

1)求拋物線的函數表達式;

2)點P為拋物線上的動點,過點Px軸的垂線,交直線BC于點M,連接PC,若為直角三角形,求點P的坐標;

3)當P滿足(2)的條件,且點P在直線BC上方的拋物線上時,如圖2,將拋物線沿射線BC方向平移,平移后BP兩點的對應點分別為,,取AB的中點E,連接,,試探究是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

【答案】1;(2)點P的坐標為:;(3.

【解析】

1)先根據一次函數的解析式,分別求出點B和點C的坐標,然后在將B、C的坐標代入二次函數解析式中,即可求出拋物線的函數表達式;

2)根據直角的情況分類討論:①若,此時,代入到二次函數解析式中,即可求出點P的坐標;②若,先求出直線PC的解析式,從而求出點P的坐標;③當,由圖易知不存在;

3)連接,作點C關于直線的對稱點,連接、,先用SAS證出△≌△,此時易證,根據兩點之間,線段最短,故當E共線時,的值最小,且最小值為,然后利用直線解析式求出的坐標,即可求出的長.

解:(1B、C過直線

y=0代入,解得x=3;將x=0代入,解得y=;

,

∵拋物線過點B、C

2)①若,此時,代入到二次函數解析式中,

,

,

②若(如圖2

∴直線PC的解析式為:

③當,由圖易知不存在.

綜上所述:點P的坐標為.

3)由(2)知,,,PC= EB=2, EB

連接,,作點C關于直線的對稱點,連接、,故

由平移可知:=

∴∠=

∴△≌△

=

根據兩點之間,線段最短,故當、E共線時,的值最小,且最小值為

設直線的解析式為y=kxb,將點P坐標代入,可得

直線的解析式為

由(2)的結論可知:直線的解析式為,設的坐標為

的中點坐標為,代入中可得:a=1

的坐標為

,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BE平分∠ABC,CF平分∠BCD,EFAD上,BECF相交于點G,若AB=7,BC=10,則△EFG與△BCG的面積之比為( )

A.4:25B.49:100C.7:10D.2:5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于給定的,我們給出如下定義:若點M是邊上的一個定點,且以M為圓心的半圓上的所有點都在的內部或邊上,則稱這樣的半圓為邊上的點M關于的內半圓,并將半徑最大的內半圓稱為點M關于的最大內半圓.若點M是邊上的一個動點(M不與B,C重合),則在所有的點M關于的最大內半圓中,將半徑最大的內半圓稱為關于的內半圓.

1)在中,,

①如圖1,點D在邊上,且,直接寫出點D關于的最大內半圓的半徑長;

②如圖2,畫出關于的內半圓,并直接寫出它的半徑長;

2)在平面直角坐標系中,點E的坐標為,點P在直線上運動(P不與O重合),將關于的內半圓半徑記為R,當時,求點P的橫坐標t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠A65°,BC6,以BC為直徑的半圓OAB、AC分別交于點D、E,則圖中由O、DE三點所圍成的扇形面積等于_____.(結果保留π

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】新華商場銷售某種冰箱,每臺進貨價為2500元.市場調研表明:當銷售價為2900元時,平均每天能售出8臺;而當銷售價每降低50元時,平均每天就能多售出4臺.商場要想使這種冰箱的銷售利潤平均每天達到5000元,設每臺冰箱的定價為x元,則x滿足的關系式為(

A. (x2500)(8+4×)=5000 B. (2900x2500)(8+4×)=5000

C. (x2500)(8+4×)=5000 D. (2900x)(8+4×)=5000

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,的外接圓,AB的直徑,在外側作,過點C于點D,交AB延長線于點P.

1)求證:PC的切線;

2)若,求的半徑;(用含m的代數式表示)

3)如圖2,在(2)的條件下,作弦CF平分,交AB于點E,連接BF,且,求線段PE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AM是△ABC的中線,D是線段AM上一點(不與點A重合).DEABAC于點F,CEAM,連接AE

1)如圖1,當點DM重合時,求證:四邊形ABDE是平行四邊形;

2)如圖2,當點D不與M重合時,(1)中的結論還成立嗎?請說明理由.

3)如圖3,延長BDAC于點H,若BHAC,且BHAM,求∠CAM的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場計劃經銷A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進價、售價如下表所示.

A

B

進價(元/盞)

40

65

售價(元/盞)

60

100

(1)若該商場購進這批臺燈共用去2500元,問這兩種臺燈各購進多少盞?

(2)在每種臺燈銷售利潤不變的情況下,若該商場銷售這批臺燈的總利潤不少于1400元,問至少需購進B種臺燈多少盞?

(3)若該商場預計用不少于2500元且不多于2600元的資金購進這批臺燈,為了打開B種臺燈的銷路,商場決定每售出一盞B種臺燈,返還顧客現金a元(10a20),問該商場該如何進貨,才能獲得最大的利潤?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為進一步提高全民節(jié)約用水意識,某學校組織學生進行家庭月用水量情況調查活動,李明隨機抽查了所住小區(qū)x戶家庭的月用水量,繪制了下面不完整的統(tǒng)計圖:

1)求x并補全條形統(tǒng)計圖;

2)求這x戶家庭的月平均用水量;并估計李明所住小區(qū)620戶家庭中月用水量低于月平均用水量的家庭戶數;

3)從月用水量為5m39m3的家庭中任選兩戶進行用水情況問卷調查,求選出的兩戶中月用水量為5m39m3恰好各有一戶家庭的概率;

查看答案和解析>>

同步練習冊答案