【題目】如圖,有長(zhǎng)為30m的籬笆,一面利用墻(墻的最大可用長(zhǎng)度為10m),圍成中間隔有一道籬笆(平行于AB)的矩形花圃.設(shè)花圃的一邊AB為xm,面積為ym2.
(1)求y與x的函數(shù)關(guān)系式;
(2)如果要圍成面積為63m2的花圃,AB的長(zhǎng)是多少?
(3)能圍成比63m2更大的花圃嗎?如果能,請(qǐng)求出最大面積;如果不能,請(qǐng)說(shuō)明理由.
【答案】(1)y=-3x2+30x.(2)AB的長(zhǎng)為7m.(3)能.最大面積為m2.
【解析】
試題分析:本題利用矩形面積公式建立函數(shù)關(guān)系式,A:利用函數(shù)關(guān)系式在已知函數(shù)值的情況下,求自變量的值,由于是實(shí)際問(wèn)題,自變量的值也要受到限制.B:利用函數(shù)關(guān)系式求函數(shù)最大值.
試題解析:(1)由題意得:
y=x(30-3x),即y=-3x2+30x.
(2)當(dāng)y=63時(shí),-3x2+30x=63.
解此方程得x1=7,x2=3.
當(dāng)x=7時(shí),30-3x=9<10,符合題意;
當(dāng)x=3時(shí),30-3x=21>10,不符合題意,舍去;
∴當(dāng)AB的長(zhǎng)為7m時(shí),花圃的面積為63m2.
(3)能.
y=-3x2+30x=-3(x-5)2+75
而由題意:0<30-3x≤10,
即≤x<10
又當(dāng)x>5時(shí),y隨x的增大而減小,
∴當(dāng)x=m時(shí)面積最大,最大面積為m2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D是Rt△ABC斜邊AB的中點(diǎn),過(guò)點(diǎn)B、C分別作BE∥CD,CE∥BD.
(1)若∠A=60°,AC=,求CD的長(zhǎng);
(2)求證:BC⊥DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解八年級(jí)學(xué)生的視力情況,對(duì)八年級(jí)學(xué)生進(jìn)行了一次視力調(diào)查,并將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)整理,繪制了頻數(shù)分布表和頻數(shù)分布直方圖的一部分.
(1)在頻數(shù)分布表中,a= ,b= ;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若將視力在4.6及以上的視力情況定義為“視力正!保蟆耙暳φ!钡娜藬(shù)占被調(diào)查人數(shù)的百分比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是一張矩形紙片,,把紙片對(duì)折,折痕為,展開后再過(guò)點(diǎn)折疊該紙片,使點(diǎn)落在上的點(diǎn)處,且折痕與相交于點(diǎn),再次展平后,連接,,并延長(zhǎng)交于點(diǎn).
(1)求證:是等邊三角形;
(2)求,的長(zhǎng);
(3)為線段上一動(dòng)點(diǎn),是的中點(diǎn),則的最小值是 .(請(qǐng)直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點(diǎn)E、F,若點(diǎn)D為底邊BC的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則△BDM的周長(zhǎng)的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)x2﹣3x=0; (2)x2﹣4x+2=0;
(3)x2﹣x﹣6=0; (4)(x+1)(x﹣2)=4﹣2x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中,厘米,厘米,點(diǎn)為的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,與是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等, 與是否可能全等?若能,求出全等時(shí)點(diǎn)Q的運(yùn)動(dòng)速度和時(shí)間;若不能,請(qǐng)說(shuō)明理由.
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在的哪條邊上相遇?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com