【題目】中考英語聽力測試期間T需要杜絕考點周圍的噪音.如圖,點A是某市一中考考點,在位于考點南偏西15°方向距離500米的C點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,消防車需沿北偏東75°方向的公路CF前往救援.已知消防車的警報聲傳播半徑為400米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?

說明理由.(1.732)

【答案】消防車不需要改道行駛.

【解析】

試題分析:過A作ADCF于D,根據(jù)題意求出ACD=60°,根據(jù)正弦的定義求出AD的長,比較即可得到答案.

試題解析:過A作ADCF于D,由題意得CAG=15°,∴∠ACE=15°,

∵∠ECF=75°,∴∠ACD=60°,在RtACD中,sinACD=,

則AD=ACsinACD=250433米,433米400米,不需要改道.

答:消防車不需要改道行駛.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個正方體的表面上分別寫著連續(xù)的6個整數(shù),且每兩個相對面上的兩個數(shù)的和都相等,則這6個整數(shù)的和為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若|a|=|b|,則a, b的關(guān)系是( ).
A.a=b
B.a=-b
C.a=b或a=-b
D.a=0且b=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于直角三角形的說法中錯誤的是(  )

A. 直角三角形的兩個銳角互余

B. 直角三角形斜邊的中點到三個頂點的距離相等

C. 直角三角形斜邊上的高等于斜邊的一半

D. 直角三角形中有兩條邊的平方和等于第三條邊的平方

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:圓心在三角形的一邊上,與另一邊相切,且經(jīng)過三角形一個頂點(非切點)的圓,稱為這個三角形圓心所在邊上的“伴隨圓”.

(1)如圖1,ABC中,C=90°,AB=5,BC=3,則AC邊上的伴隨圓的半徑為

(2)如圖2,已知等腰ABC,AB=AC=5,BC=6,畫草圖并直接寫出它的所有伴隨圓的半徑.

(3)如圖3,ABC中,ACB=90°,點P在邊AB上,AP=2BP,D為AC中點,且CPD=90°.

①求證:CPD的外接圓是ABC某一條邊上的伴隨圓;

②求cosPDC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖。
(1)如圖1,若CO⊥AB,垂足為O,OE、OF分別平分∠AOC與∠BOC.求∠EOF的度數(shù);
(2)如圖2,若∠AOC=∠BOD=80°,OE、OF分別平分∠AOD與∠BOC.求∠EOF的度數(shù);
(3)若∠AOC=∠BOD=α,將∠BOD繞點O旋轉(zhuǎn),使得射線OC與射線OD的夾角為β,OE、OF分別平分∠AOD與∠BOC.若α+β≤180°,α>β,則∠EOC= . (用含α與β的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】垃圾的分類處理與回收利用,可以減少污染,節(jié)省資源.某城市環(huán)保部門為了提高宣傳實效,抽樣調(diào)查了部分居民小區(qū)一段時間內(nèi)生活垃圾的分類情況,其相關(guān)信息如圖:

(注:A為可回收物,B為廚余垃圾,C為有害垃圾,D為其他垃圾)

根據(jù)圖表解答下列問題:

(1)在抽樣數(shù)據(jù)中,產(chǎn)生的有害垃圾共多少噸?

(2)請將條形統(tǒng)計圖補充完整;

(3)調(diào)查發(fā)現(xiàn),在可回收物中塑料類垃圾占,每回收1噸塑料類垃圾可獲得0.7噸二級原料.假設(shè)該城市每月產(chǎn)生的生活垃圾為5000噸,且全部分類處理,那么每月回收的塑料類垃圾可以獲得多少噸二級原料?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BD為△ABC的中線,CE⊥BDE,AF⊥BDF.于是小白說:

“BE+BF=2BD”.你認為他的判斷對嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題是真命題的是( 。

A.多邊形的內(nèi)角和為360°

B.2ab1,則代數(shù)式6a3b30

C.二次函數(shù)y=(x12+2的圖象與y軸的交點的坐標(biāo)為(0,2

D.矩形的對角線互相垂直平分

查看答案和解析>>

同步練習(xí)冊答案