【題目】小明在一次用頻率估計(jì)概率的實(shí)驗(yàn)中,統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,并繪制了如圖所示的統(tǒng)計(jì)圖,則符合這一結(jié)果的實(shí)驗(yàn)可能是( )
A.從分別寫著數(shù)字1,2,3的三個(gè)紙團(tuán)中隨機(jī)抽取一個(gè),抽中2的概率
B.擲一枚質(zhì)地均勻的骰子,向上的點(diǎn)數(shù)是偶數(shù)的概率
C.同時(shí)拋擲兩枚質(zhì)地均勻的硬幣,一枚正面向上、一枚反面向上的概率
D.從一副去掉大小王的撲克牌,任意抽取一張,抽到紅桃的概率
【答案】A
【解析】
根據(jù)統(tǒng)計(jì)圖可知,試驗(yàn)結(jié)果在0.33附近波動(dòng),即其概率,計(jì)算四個(gè)選項(xiàng)的概率,約為0.33者即為正確答案.
解:A、分別寫著數(shù)字1,2,3的三個(gè)紙團(tuán)中隨機(jī)抽取一個(gè),抽中2的概率為≈0.33,故此選項(xiàng)符合題意;
B、擲一枚質(zhì)地均勻的骰子,向上的點(diǎn)數(shù)是偶數(shù)的概率為,故此選項(xiàng)不符合題意;
C、同時(shí)拋擲兩枚質(zhì)地均勻的硬幣,一枚正面向上、一枚反面向上的概率,故此選項(xiàng)不符合題意;
D、從一副去掉大小王的撲克牌,任意抽取一張,抽到紅桃的概率是,故此選項(xiàng)不符合題意.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別是線段AB、AD上的動(dòng)點(diǎn)(不與端點(diǎn)重合),且AE=DF,BF與DE相交于點(diǎn)G.給出如下幾個(gè)結(jié)論:①△AED≌△DFB;②∠BGE大小會(huì)發(fā)生變化;③CG平分∠BGD;④若AF=2DF,則BG=6GF;.其中正確的結(jié)論有_____(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形中,,點(diǎn)在邊上,且,點(diǎn)為邊上的任意一點(diǎn)(不與點(diǎn),重合),把沿折疊,當(dāng)點(diǎn)的對應(yīng)點(diǎn)落在的邊上時(shí),的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“揚(yáng)州漆器”名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=mx+n與雙曲線y=相交于A(﹣1,2),B(2,b)兩點(diǎn),與y軸相交于點(diǎn)C.
(1)求m,n的值;
(2)若點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一扇門ABCD,寬度AB=1m,A到墻角E的距離AE=0.5m,設(shè)E,A,B在一條直線上,門打開后被與門所在墻面垂直的墻阻擋(EA⊥EB′),邊BC靠在墻B'C'的位置.
(1)求∠BAB'的度數(shù);
(2)打開門后,門角上的點(diǎn)B在地面掃過的痕跡為弧BB',設(shè)弧BB'與兩墻角線圍成區(qū)域(如圖2)的面積為S(m2),求S的值(π≈3.14,≈1.73,精確到0.1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點(diǎn),將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則sin∠BED的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個(gè)單位后得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A2B2C2,請畫出△A2B2C2;
(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無須說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB垂直于弦CD,垂足為點(diǎn)E,過點(diǎn)C作⊙O 的切線,交AB的延長線于點(diǎn)P,聯(lián)結(jié)PD.
(1)判斷直線PD與⊙O的位置關(guān)系,并加以證明;
(2)聯(lián)結(jié)CO并延長交⊙O于點(diǎn)F,聯(lián)結(jié)FP交CD于點(diǎn)G,如果CF=10,cos∠APC=,求EG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com