【題目】以直線上點為端點作射線,使,將直角的直角頂點放在點處.
(1)若直角的邊在射線上(圖①),求的度數(shù);
(2)將直角繞點按逆時針方向轉(zhuǎn)動,使得所在射線平分(圖②),說明所在射線是的平分線;
(3)將直角繞點按逆時針方向轉(zhuǎn)動到某個位置時,恰好使得(圖③),求的度數(shù).
【答案】(1);(2)見解析; (3) 或
【解析】
(1)代入∠BOE=∠COE+∠COB求出即可;
(2)求出∠AOE=∠COE,根據(jù)∠DOE=90°求出∠AOE+∠DOB=90°,∠COE+∠COD=90°,推出∠COD=∠DOB,即可得出答案;
(3)要分情況討論,一種是∠COD在∠BOC的內(nèi)部,另一種是∠COD在∠BOC的外部,再根據(jù)平角等于180°可通過列方程求出即可.
解:(1)∵,
又∵,
∴.
(2)∵平分,
∴,
∵,
∴,,
∴,
∴所在直線是的平分線.
(3)設(shè),則,
∵,,
①若∠COD在∠BOC的外部,
∴,解得x=10,
∴∠COD=10°,
∴∠BOD=60°+10°=70°;
②若∠COD在∠BOC的內(nèi)部,
,解得x=30,
∴∠COD=30°,
∴∠BOD=60°-30°=30°;
即或,
∴或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板的兩個銳角頂點重合,,,,分別是,的平分線.
(1)如圖①所示,當(dāng)與重合時,則的大小為______.
(2)當(dāng)繞著點旋轉(zhuǎn)至如圖②所示,當(dāng),則的大小為多少?
(3)當(dāng)繞著點旋轉(zhuǎn)至如圖③所示,當(dāng)時,求的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司有甲、乙、丙三個機器人分配快件,甲單獨完成需要x小時,乙單獨完成需要y小時,丙單獨完成需要z小時.
(1)求甲單獨完成的時間是乙丙合作完成時間的幾倍?
(2)若甲單獨完成的時間是乙丙合作完成時間的a倍,乙單獨完成的時間是甲丙合作完成時間的b倍,丙單獨完成的時間是甲乙合作完成時間的c倍,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=kx2+(k﹣2)x﹣2(其中k>0).
(1)求該拋物線與x軸的交點及頂點的坐標(biāo)(可以用含k的代數(shù)式表示);
(2)若記該拋物線頂點的坐標(biāo)為P(m,n),直接寫出|n|的最小值;
(3)將該拋物線先向右平移個單位長度,再向上平移個單位長度,隨著k的變化,平移后的拋物線的頂點都在某個新函數(shù)的圖象上,求新函數(shù)的解析式(不要求寫自變量的取值范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到;②點O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO;⑤S△AOC+S△AOB=.其中正確的結(jié)論是( 。
A.①②③⑤B.①②③④C.①②③④⑤D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點在數(shù)軸上對應(yīng)的數(shù)為,點對應(yīng)的數(shù)為,且G為線段上一點,兩點分別從點沿方向同時運動,設(shè)點的運動速度為點的運動速度為,運動時間為.
(1)點對應(yīng)的數(shù)為 ,點對應(yīng)的數(shù)為 ;
(2)若,試求為多少時,兩點的距離為;
(3)若,點為數(shù)軸上任意一點,且,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)(a,b)是一次函數(shù)y=(k-2)x+m與反比例函數(shù)的圖象的交點,且a、b是關(guān)于x的一元二次方程的兩個不相等的實數(shù)根,其中k為非負(fù)整數(shù),m、n為常數(shù).
(1)求k的值;
(2)求一次函數(shù)與反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某藍(lán)莓種植生產(chǎn)基地產(chǎn)銷兩旺,采摘的藍(lán)莓部分加工銷售,部分直接銷售,且當(dāng)天都能銷售完,直接銷售是40元/斤,加工銷售是130元/斤(不計損耗).已知基地雇傭20名工人,每名工人只能參與采摘和加工中的一項工作,每人每天可以采摘70斤或加工35斤.設(shè)安排x名工人采摘藍(lán)莓,剩下的工人加工藍(lán)莓.
(1)若基地一天的總銷售收入為y元,求y與x的函數(shù)關(guān)系式;
(2)試求如何分配工人,才能使一天的銷售收入最大?并求出最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com