精英家教網(wǎng)如圖,已知兩點A(2,0),B(0,4),且∠1=∠2,則點C的坐標(biāo)是
 
分析:根據(jù)已知條件,易證△AOC∽△BOA.運(yùn)用相似三角形的性質(zhì)求OC即得解.
解答:解:∵∠1=∠2,∠BOA=∠AOC
∴△AOC∽△BOA
OC
OA
=
OA
OB
OC
2
=
2
4

∴OC=1
∴點C的坐標(biāo)是(0,1).
點評:求點的坐標(biāo)的問題可以轉(zhuǎn)化為求線段的長度的問題,本題利用了三角形的相似的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知兩點A(-8,0),C(0,4),以AB為直徑的半圓與y軸正半軸交于點C.
(1)求過A、C兩點的直線的解析式和經(jīng)過A、B、C三點的拋物線的解析式;
(2)若點D是(1)中拋物線的頂點,求△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知兩點A(2,0),B(0,4),且sin∠1=cos∠2,則點C的坐標(biāo)為
(0,1)
(0,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知兩點A(6,3),B(6,0),以原點O為位似中心,相似比為1:3把線段AB縮小,則點A的對應(yīng)點坐標(biāo)是
(2,1)或(-2,-1)
(2,1)或(-2,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知兩點P、Q在銳角∠AOB內(nèi),分別在OA、OB上求作點M、N,使PM+MN+NQ最短.

查看答案和解析>>

同步練習(xí)冊答案