【題目】圖①是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀把它均分成四個小長方形,然后按圖②的形狀拼成一個正方形.
(1)你認為圖②中的陰影部分的正方形的邊長等于多少?
(2)請用兩種不同的方法求圖②中陰影部分的面積.
(3)觀察圖②你能寫出下列三個代數(shù)式之間的等量關系嗎?
代數(shù)式:(m+n)2,(m-n)2,mn.
(4)根據(jù)(3)題中的等量關系,解決如下問題:
已知a+b=7,ab=5,求(a-b)2的值.(寫出過程)
【答案】解:(1)m-n;(2)詳見解析;(3)(m+n)2=(m-n)2+4mn;(4)29.
【解析】
(1)觀察可得陰影部分的正方形邊長是m-n;
(2)方法1:邊長為m+n的大正方形的面積減去4個長為m,寬為n的小長方形面積;
方法2:邊長為m+n的大正方形的面積減去長為2m,寬為2n的長方形面積;
(3)由(2)可得結論(m+n)2=(m-n)2+4mn;
(4)由(a-b)2=(a+b)2-4ab求解.
(1)陰影部分的正方形邊長是m-n.
(2)陰影部分的面積就等于邊長為m-n的小正方形的面積,
方法1:邊長為m+n的大正方形的面積減去長為2m,寬為2n的長方形面積,
即(m-n)2=(m+n)2-4mn;
方法2:邊長為m+n的大正方形的面積減去長為2m,寬為2n的長方形面積,
即(m-n)2=(m+n)2-2m2n=(m+n)2-4mn;
(3)(m+n)2=(m-n)2+4mn.
(4)(a-b)2=(a+b)2-4ab=49-4×5=29.
科目:初中數(shù)學 來源: 題型:
【題目】完成下列推理過程:
已知:如圖,∠1+∠2=180°,∠3=∠B
求證:∠EDG+∠DGC=180°
證明:∵∠1+∠2=180°(已知)
∠1+∠DFE=180°( )
∴∠2= ( )
∴EF∥AB( )
∴∠3= ( )
又∵∠3=∠B(已知)
∴∠B=∠ADE( )
∴DE∥BC( )
∴∠EDG+∠DGC=180°( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB∥CD,點E為AB,CD之外任意一點.
(1)如圖1,探究∠BED與∠B,∠D的數(shù)量關系,并說明理由;
(2)如圖2,探究∠CDE與∠B,∠E的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】分解因式:
(1)a2b-abc; (2)3a(x-y)+9(y-x);
(3)(2a-b)2+8ab; (4)(m2-m)2+(m2-m)+ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y= x﹣3與x軸、y軸分別交于A、B兩點,P在以C(0,1)為圓心,1為半徑的圓上一動點,連結PA、PB,則△PAB面積的最大值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解九年級學生(共450人)的身體素質情況,體育老師對九(1)班的50位學生進行一分鐘跳繩次數(shù)測試,以測試數(shù)據(jù)為樣本,繪制了如下部分頻數(shù)分布表和部分頻數(shù)分布直方圖.
組別 | 次數(shù)x | 頻數(shù)(人數(shù)) |
A | 80≤x<100 | 6 |
B | 100≤x<120 | 8 |
C | 120≤x<140 | m |
D | 140≤x<160 | 18 |
E | 160≤x<180 | 6 |
請結合圖表解答下列問題:
(1)表中的m=;
(2)請把頻數(shù)分布直方圖補完整;
(3)這個樣本數(shù)據(jù)的中位數(shù)落在第組;
(4)若九年級學生一分鐘跳繩次數(shù)(x)合格要求是x≥120,則估計九年級學生中一分鐘跳繩成績不合格的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作⊙O的切線,交AB于點E,交CA的延長線于點F.
(1)求證:EF⊥AB;
(2)若∠C=30°,EF= ,求EB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點M的坐標為(2,8),點N的坐標為(2,6),將線段MN向右平移4個單位長度得到線段PQ(點P和點Q分別是點M和點N的對應點),連接MP、NQ,點K是線段MP的中點.
(1)求點K的坐標;
(2)若長方形PMNQ以每秒1個單位長度的速度向正下方運動,(點A、B、C、D、E分別是點M、N、Q、P、K的對應點),當BC與x軸重合時停止運動,連接OA、OE,設運動時間為t秒,請用含t的式子表示三角形OAE的面積S(不要求寫出t的取值范圍);
(3)在(2)的條件下,連接OB、OD,問是否存在某一時刻t,使三角形OBD的面積等于三角形OAE的面積?若存在,請求出t值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當點A落在四邊形BCDE的外部時,則∠A與∠1和∠2之間有一種數(shù)量關系始終保持不變,請試著找一找這個規(guī)律,你發(fā)現(xiàn)的規(guī)律是( 。
A. ∠A=∠1-∠2 B. 2∠A=∠1-∠2 C. 3∠A=2∠1-∠2 D. 3∠A=2(∠1-∠2)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com