【題目】如圖,AB為⊙O的弦,C為弦AB上一點(diǎn),設(shè)AC=m,BC=nmn),將弦AB繞圓心O旋轉(zhuǎn)一周,若線段BC掃過的面積為(m2n2)π,則=_____

【答案】

【解析】

先確定線段BC過的面積:圓環(huán)的面積,作輔助圓和弦心距OD,根據(jù)已知面積列等式可得:S=πOB2-πOC2=(m2-n2)π,則OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得結(jié)論.

如圖,連接OB、OC,以O(shè)為圓心,OC為半徑畫圓,

則將弦AB繞圓心O旋轉(zhuǎn)一周,線段BC掃過的面積為圓環(huán)的面積,

即S=πOB2-πOC2=(m2-n2)π,

OB2-OC2=m2-n2

AC=m,BC=n(m>n),

AM=m+n,

過O作ODAB于D,

BD=AD=AB=,CD=AC-AD=m-=,

由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,

m2-n2=mn,

m2-mn-n2=0,

m=,

m>0,n>0,

m=

,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙P的圓心P(m,n)在拋物線y=上.

(1)寫出mn之間的關(guān)系式;

(2)當(dāng)⊙P與兩坐標(biāo)軸都相切時,求出⊙P的半徑;

(3)若⊙P的半徑是8,且它在x軸上截得的弦MN,滿足0≤MN≤2時,求出m、n的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的三邊分別為6cm、8cm、10cm,則這個三角形內(nèi)切圓的半徑是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1、圖2,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90°,

(1)在圖1中,ACBD相等嗎?請說明理由;

(2)若△COD繞點(diǎn)O順時針旋轉(zhuǎn)一定角度后,到達(dá)圖2的位置,請問ACBD還相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線與反比例函數(shù)k0)的圖象交于點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)Bx軸正半軸上一點(diǎn),且ABOA

1)求反比例函數(shù)的解析式;

2)求點(diǎn)B的坐標(biāo);

3)先在∠AOB的內(nèi)部求作點(diǎn)P,使點(diǎn)P到∠AOB的兩邊OAOB的距離相等,且PA=PB;再寫出點(diǎn)P的坐標(biāo).(不寫作法,保留作圖痕跡,在圖上標(biāo)注清楚點(diǎn)P

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(―2,0,01),⊙C的圓心坐標(biāo)為(0,―1),半徑為1.若D是⊙C上的一個動點(diǎn),射線ADy軸交于點(diǎn)E,則△ABE面積的最大值是( )

A. 4 B. C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題提出)

“不以規(guī)矩,不能成方圓.”——孟子;“圓,一中同長也.”——墨經(jīng).

1)圓,一中同長也.”體現(xiàn)了古代先哲對“圓”定義的思考,請用現(xiàn)代文翻譯:____

(初步思考)

圓規(guī)是我們初中幾何學(xué)習(xí)不可或缺的工具,用圓規(guī)不僅可以畫圓、畫弧,還可以畫弧與弧的交點(diǎn),利用這一特征可以構(gòu)造很多圖形,如:

2)角平分線:如圖1,只用圓規(guī)在∠AOB中畫出一點(diǎn)P使得點(diǎn)P在∠AOB的角平分線上;對稱點(diǎn):如圖2,只用圓規(guī)畫出點(diǎn)P關(guān)于直線l的對稱點(diǎn)Q,并說明理由.

(操作與應(yīng)用)

3)已知點(diǎn)A、直線l.在圖3只用圓規(guī)在直線l上畫出兩點(diǎn)B、C,使得AB、C恰好是等腰三角形的3個頂點(diǎn),(畫出一個并寫出相等線段即可):

已知點(diǎn)P、直線l.在圖4只用圓規(guī)畫出一點(diǎn)Q,使得點(diǎn)P、Q所在的直線與直線l平行.(提示:平行四邊形對邊平行).

4)已知點(diǎn)O、A、B,只用圓規(guī)畫出半徑為AB的⊙O與點(diǎn)AB所在直線的交點(diǎn)C、D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ABC = 90°,BC = 1,AC =

1以點(diǎn)B為旋轉(zhuǎn)中心,將ABC沿逆時針方向旋轉(zhuǎn)90°得到ABC′,請畫出變換后的圖形;

2求點(diǎn)A和點(diǎn)A′之間的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1y=x-3x軸,y軸分別交于點(diǎn)A和點(diǎn)B

1)求點(diǎn)A和點(diǎn)B的坐標(biāo);

2)將直線l1向上平移6個單位后得到直線l2,求直線l2的函數(shù)解析式;

3)設(shè)直線l2x軸的交點(diǎn)為M,則MAB的面積是______

查看答案和解析>>

同步練習(xí)冊答案