【題目】ABC中,BC8,以AC為邊向外作等邊△ACD

1)如圖①,△ABE是等邊三角形,若AC6,∠ACB30°,求CE的長;

2)如圖②,若∠ABC60°,AB4,求BD的長.

【答案】110;(2

【解析】

1)根據(jù)等邊三角形的性質(zhì)及等式的性質(zhì)求得,然后利用邊角邊定理證明,從而求得,然后判定為直角三角形,利用勾股定理求BD的長,使問題得解;

2)取的中點(diǎn),連接,求得是等邊三角形,是等腰三角形,從而求得,∠BAC=90° ,然后利用勾股定理求解.

1)∵都是等邊三角形.

,

,

,

,為直角三角形.

2)取的中點(diǎn),連接,

BC=8,∴BE=CE=AB=4

又∵∠ABC60°

是等邊三角形,是等腰三角形,

∴∠AEB=2ECA=60°,即∠ECA=30°

由△ADC為等邊三角形,可知∠ACD=60°

,∠BAC=90°

∴在RtABC中,

∴在RtBCD中,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為16cm2,AEF為等腰直角三角形,∠E=90°,AEBC交于點(diǎn)GAFCD交于點(diǎn)H,則CGH的周長( 。

A. 4cmB. 6cmC. 8cmD. 10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,點(diǎn)OAC邊上的一個動點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.

(1)判斷OEOF的大小關(guān)系?并說明理由?

(2)當(dāng)點(diǎn)O運(yùn)動何處時(shí),四邊形AECF是矩形?并說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋中裝有5個黃球、13個黑球和22個紅球,這些球除顏色外其他都相同.

1)求從袋中摸出一個球是黃球的概率;

2)求從袋中摸出一個球不是紅球的概率;

3)現(xiàn)在從袋中取出若干個黑球,并放入相同數(shù)量的黃球,攪拌均勻后,若從袋中摸出一個球是黃球的概率為,則取出了多少個黑球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩位同學(xué)利用燈光下的影子來測量一路燈A的高度,如圖,當(dāng)甲走到點(diǎn)C處時(shí),乙測得甲直立身高CD與其影子長CE正好相等,接著甲沿BC方向繼續(xù)向前走,走到點(diǎn)E處時(shí),甲直立身高EF的影子恰好是線段EG,并測得EG=2.5m.已知甲直立時(shí)的身高為1.75m,求路燈的高AB的長.(結(jié)果精確到0.1m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,下列條件不能判定這個四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BAD、ABC的平分線AF、BG分別與線段CD交于點(diǎn)F、G,

AF與BG交于點(diǎn)E.

(1)求證:AFBG,DF=CG;

(2)若AB=10,AD=6,AF=8,求FG和BG的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個平面直角坐標(biāo)系.

1)請?jiān)趫D中描出以下6個點(diǎn):A0,2)、B4,2)、C3,4A-4,-4)、B'0,-4)、C-1,-2

2)分別順次連接A、B、CA、B'、C',得到三角形ABC和三角形ABC;

3)觀察所畫的圖形,判斷三角形ABC能否由三角形ABC平移得到,如果能,請說出三角形ABC是由三角形ABC怎樣平移得到的;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】材料閱讀:材料1:符號稱為二階行列式,規(guī)定它的運(yùn)算法則為.如

材料2:我們已經(jīng)學(xué)習(xí)過求解一元一次方程、二元一次方程組、分式方程等方程的解法,雖然各類方程的解法不盡相同,但是蘊(yùn)含了相同的基本數(shù)學(xué)思想——轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.用“轉(zhuǎn)化”的數(shù)學(xué)思想,還可以解一些新的方程.例如,求解部分一元二次方程時(shí),我們可以利用因式分解把它轉(zhuǎn)化為一元一次方程來求解.如解方程:.∵.故.因此原方程的解是,

根據(jù)材料回答以下問題:

1)二階行列式___________;二階行列式的值為__________

2)求解的值.

3)結(jié)合材料,若,且,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案