【題目】萬(wàn)州二中八十周年校慶來(lái)臨之際,學(xué)校本著簡(jiǎn)樸,節(jié)儉,實(shí)效,特色的原則將 2019 10 25 日至 11 25 日定為校友回訪月,學(xué)?倓(wù)處購(gòu)買(mǎi)了紅,黃,藍(lán)三種花卉裝扮 A,BC,D 四種造型,其中一個(gè) A 造型需要 15 盆紅花,10 盆黃花,10 盆藍(lán)花;一個(gè) B 造型需要 5 盆紅花,7 盆黃花,6 盆藍(lán)花;一個(gè) C 造型需要 7 盆紅花,8 盆黃花,9 盆藍(lán) 花;一個(gè) D 造型需要 7 盆紅花,10 盆黃花,10 盆藍(lán)花,若一個(gè) A 造型售價(jià) 1800 元,利潤(rùn) 率為 20%,一個(gè) B 和一個(gè) C 造型一共成本和為 1935 元,且一盆紅花的利潤(rùn)率為 25%,則一個(gè) D 造型的售價(jià)為_____元.

【答案】1500

【解析】

先根據(jù)A造型的售價(jià)計(jì)算它的成本價(jià),一個(gè) B 和一個(gè) C 造型一共需要12盆紅花,共需要黃花和藍(lán)花都是15盆.據(jù)此可設(shè)一盆紅花成本為x元,一盆黃花和藍(lán)花的成本價(jià)之和為y元,列出方程組,求出xy的值.根據(jù)紅花的利潤(rùn)率為25%可計(jì)算出紅花一盆的售價(jià),然后可觀察D造型比A造型只少了8盆紅花,據(jù)此可通過(guò)A造型的售價(jià)就算D造型的售價(jià).

解:根據(jù)題意可列表格為

紅花

黃花

藍(lán)花

A

15

10

10

B

5

7

6

C

7

8

9

D

7

10

10

因?yàn)橐粋(gè) A 造型售價(jià) 1800 元,利潤(rùn)率為 20%,

所以A造型的成本價(jià)為1800÷(1+20%)=1500.

設(shè)一盆紅花的成本價(jià)為x元,一盆黃花和藍(lán)花的成本價(jià)之和為y

則根據(jù)題意

解得.

因?yàn)橐慌杓t花的利潤(rùn)率為25%,所以一盆紅花的售價(jià)為30×(1+25%)=37.5.

根據(jù)D造型比A造型少8盆紅花,所以D造型的造價(jià)為:

1800-37.5×8=1500元,故填:1500.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新定義:對(duì)于關(guān)于的函數(shù),我們稱(chēng)函數(shù)為函數(shù)ym分函數(shù)(其中m為常數(shù)).

例如:對(duì)于關(guān)于x一次函數(shù)分函數(shù)為

1)若點(diǎn)在關(guān)于x的一次函數(shù)分函數(shù)上,求的值;

2)寫(xiě)出反比例函數(shù)分函數(shù)的圖象上yx的增大而減小的x的取值范圍:

3)若是二次函數(shù)關(guān)于x分函數(shù),

①當(dāng)時(shí),求y的取值范圍;

②當(dāng)時(shí),,則的取值范圍為

③若點(diǎn),連結(jié),當(dāng)關(guān)于的二次函數(shù)分函數(shù),與線段MN有兩個(gè)交點(diǎn),直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°AC8cmBC6cm,動(dòng)點(diǎn)M以每秒1cm的速度從點(diǎn)B向點(diǎn)C移動(dòng);同時(shí)動(dòng)點(diǎn)N3cm的速度從點(diǎn)CA移動(dòng),當(dāng)點(diǎn)N到達(dá)點(diǎn)A時(shí),兩點(diǎn)都停止移動(dòng),連接MN,設(shè)移動(dòng)時(shí)間為t秒.

1)當(dāng)t為何值時(shí),SMNCS四邊形ABMN?

2)當(dāng)t為何值時(shí),MNCABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2bxc(a≠0)的圖象如圖所示,給出下列結(jié)論 b24ac>0; 2ab<0; 4a-2bc=0; abc= -123.其中正確的是【

(A) ①② (B) ②③ (C) ③④ (D)①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BCx軸平行,A,B兩點(diǎn)的縱坐標(biāo)分別為4,2,反比例函數(shù)yx0)的圖象經(jīng)過(guò)AB兩點(diǎn),若菱形ABCD的面積為2,則k的值為( 。

A. 2B. 3C. 4D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD 中,∠BAD 的平分線交直線 BC 于點(diǎn) E,交直線 DC 于點(diǎn) F,D=120°

1)如圖 1,若 AD=6,求ADF 的面積;

2)如圖 2,過(guò)點(diǎn) F FGCEFGCE,連結(jié) DB、DG,求證:BD=DG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AB=1,BC=,對(duì)角線AC,BD交于O點(diǎn),將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交于BC,AD于點(diǎn)E,F(xiàn).

(1)證明:當(dāng)旋轉(zhuǎn)角為   時(shí),四邊形ABEF是平行四邊形;

(2)在旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不可能,請(qǐng)說(shuō)明理由;如果可能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),對(duì)稱(chēng)軸為,則下列結(jié)論中正確的是(

A.

B. 當(dāng)時(shí),的增大而增大

C.

D. 是一元二次方程的一個(gè)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD邊長(zhǎng)為5,頂點(diǎn)ABx軸的正半軸上,頂點(diǎn)Dy軸的正半軸上,且點(diǎn)A的坐標(biāo)是(30),以點(diǎn)C為頂點(diǎn)的拋物線經(jīng)過(guò)點(diǎn)A

1)求點(diǎn)C的坐標(biāo);

2)求拋物線的解析式;

3)若將上述拋物線進(jìn)行平移,使得平移后的拋物線的頂點(diǎn)P在直線BC上,且此時(shí)的拋物線恰好經(jīng)過(guò)點(diǎn)D,求平移后的拋物線解析式及其頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案