如圖所示,在平面直角坐標系內(nèi)點A和點C的坐標分別為(4,8),(0,5),過點A作AB⊥x軸于點B,過OB上的動點D作直線y=kx+b平行于AC,與AB相交于點E,連接CD,過點E作EFCD交AC于點F.
(1)求經(jīng)過A、C兩點的直線的解析式;
(2)當點D在OB上移動時,能否使四邊形CDEF為矩形?若能,求出此時k,b的值;若不能,請說明理由.
(1)設直線AC的解析式為y=kx+b,
∵A(4,8),C(0,5),
4k+b=8
b=5
,
解得
k=
3
4
b=5
,
∴直線AC的解析式為:y=
3
4
x+5;

(2)∵DEAC,直線AC的解析式為:y=
3
4
x+5,
∴可設直線DE的解析式為:y=
3
4
x+n.
設直線DE與y軸交于點M,則M(0,n),D(-
4
3
n,0).
如果四邊形CDEF為矩形,則DE⊥CD,
∴∠OCD=∠ODM=90°-∠ODC,
又∵∠COD=∠DOM,
∴△COD△DOM,
∴OC:OD=OD:OM,
∴OD2=OC•OM,
∴(-
4
3
n)2=5|n|,
∵n<0,解得n=-
45
16

即直線DE的解析式為:y=
3
4
x-
45
16
,
故能使四邊形CDEF為矩形,此時k=
3
4
,b=-
45
16

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示是溫度計的示意圖,左邊的刻度表示攝氏溫度,右邊的刻度表示華氏溫度,華氏(℉)溫度y與攝氏(℃)溫度x之間的函數(shù)解析式為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

今年以來,廣東大部分地區(qū)的電力緊缺,電力公司為鼓勵市民節(jié)約用電,采取按月用電量分段收費辦法,若某戶居民每月應交電費y(元)與用電量x(度)的函數(shù)圖象是一條折線(如圖所示),根據(jù)圖象解下列問題:
(1)分別寫出當0≤x≤100和x>100時,y與x的函數(shù)關系式;
(2)利用函數(shù)關系式,說明電力公司采取的收費標準;
(3)若該用戶某月用電62度,則應繳費多少元若該用戶某月繳費105元時,則該用戶該月用了多少度電?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

先閱讀下列材料,再解答后面的問題.
材料:密碼學是一門很神秘、很有趣的學問,在密碼學中,直接可以看到的信息稱為明碼,加密后的信息稱為密碼,任何密碼只要找到了明碼與密碼的對應關系--密鑰,就可以破譯它.
密碼學與數(shù)學是有關系的.為此,八年一班數(shù)學興趣小組經(jīng)過研究實驗,用所學的一次函數(shù)知識制作了一種密鑰的編制程序.他們首先設計了一個“字母--明碼對照表”:
字母ABCDEFGHIJKLM
明碼12345678910111213
字母NOPQRSTUVWXYZ
明碼14151617181920212213242526
例如,以y=3x+13為密鑰,將“自信”二字進行加密轉換后得到下表:
漢字
拼音ZIXIN
明碼:x26924914
密鑰:y=
密碼:y9140
因此,“自”字加密轉換后的結果是“9140”.
問題:
(1)請你求出當密鑰為y=3x+13時,“信”字經(jīng)加密轉換后的結果;
(2)為了提高密碼的保密程度,需要頻繁地更換密鑰.若“自信”二字用新的密鑰加密轉換后得到下表:
漢字
拼音ZIXIN
明碼:x26924914
密鑰:y=
密碼:y7036
請求出這個新的密鑰,并直接寫出“信”字用新的密鑰加密轉換后的結果.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某個水池有2個進水口,1個出水口.每個進水口的進水量y(m3)與時間x(h)的關系如甲圖所示,每個出水口的出水量(m3)與時間(h)的關系如下表所示.某天0到4時,該水池的蓄水量V(m3)與時間t(時)的關系如乙圖所示.
時間(h)1234
出水量(m32468
(1)觀察甲圖,寫出每個進水口的進水量y(m3)與時間x(h)的函數(shù)關系式:______;
(2)觀察乙圖,判斷下列說法是否正確(對的打“√”,錯的打“×”);
①0時到2時,兩個進水口開放,出水口關閉;(√)
②2時到4時,出水口和兩個進水口都開放或都關閉.(√)
(3)從4時起,同時打開出水口和一個進水口,何時刻該水池的蓄水量為2m3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知等腰三角形的周長為20cm,試求出底邊長y(cm)表示成腰長x(cm)的函數(shù)關系式,并求其自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點P(x,y)是第一象限直線y=-x+6上的點,點A(5,0),O是坐標原點,△PAO的面積為S.
(1)求S與x的函數(shù)關系式;
(2)當S=10時,求tan∠POA的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一次函數(shù)y=-
3
4
x+6
的圖象與坐標軸交于A、B點(如圖),AE平分∠BAO,交x軸于點E.

(1)求點B的坐標;
(2)求直線AE的表達式;
(3)過點B作BF⊥AE,垂足為F,連接OF,試判斷△OFB的形狀,并求△OFB的面積.
(4)若將已知條件“AE平分∠BAO,交x軸于點E”改變?yōu)椤包cE是線段OB上的一個動點(點E不與點O、B重合)”,過點B作BF⊥AE,垂足為F.設OE=x,BF=y,試求y與x之間的函數(shù)關系式,并寫出函數(shù)的定義域.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

“五一黃金周”的某一天,小明全家上午8時自駕小汽車從家里出發(fā),到距離180千米的某著名旅游景點游玩.該小汽車離家的距離s(千米)與時間t(時)的關系可以用圖中的曲線表示.根據(jù)圖象提供的有關信息,解答下列問題:
(1)小明全家在旅游景點游玩了多少小時?
(2)求出返程途中,s(千米)與時間t(時)的函數(shù)關系,并回答小明全家到家是什么時間?
(3)若出發(fā)時汽車油箱中存油15升,該汽車的油箱總容量為35升,汽車每行駛1千米耗油
1
9
升.請你就“何時加油和加油量”給小明全家提出一個合理化的建議.(加油所用時間忽略不計)

查看答案和解析>>

同步練習冊答案