(2004•石景山區(qū)模擬)已知拋物線y=-x2+2mx-m2-m+3
(1)證明拋物線頂點(diǎn)一定在直線y=-x+3上;
(2)若拋物線與x軸交于M、N兩點(diǎn),當(dāng)OM•ON=3,且OM≠ON時(shí),求拋物線的解析式;
(3)若(2)中所求拋物線頂點(diǎn)為C,與y軸交點(diǎn)在原點(diǎn)上方,拋物線的對(duì)稱軸與x軸交于點(diǎn)B,直線y=-x+3與x軸交于點(diǎn)A.點(diǎn)P為拋物線對(duì)稱軸上一動(dòng)點(diǎn),過點(diǎn)P作PD⊥AC,垂足D在線段AC上.試問:是否存在點(diǎn)P,使S△PAD=S△ABC?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】分析:(1)先根據(jù)拋物線的解析式,用配方法得出拋物線頂點(diǎn)的表達(dá)式,然后代入直線y=-x+3中即可得出所證的結(jié)論.
(2)已知:OM•ON=3,根據(jù)一元二次方程根與系數(shù)的關(guān)系可知:方程0=-x2+2mx-m2-m+3中,m2-m+3=±3,據(jù)此可求出m的值,然后可根據(jù)OM≠ON和方程的△>0將不合題意的m值舍去,由此可求出拋物線的解析式.
(3)可先根據(jù)拋物線和直線AC的解析式求出A、C點(diǎn)的坐標(biāo).進(jìn)而可求出AC的長(zhǎng).可先設(shè)PD的長(zhǎng)為x,那么可用x表示出CD,AD的長(zhǎng),進(jìn)而可表示出△APD的面積,根據(jù)S△PAD=S△ABC,即可得出x的值,也就能求出CD、PD的長(zhǎng),進(jìn)而可求出CP的長(zhǎng),也就不難得出P點(diǎn)的坐標(biāo)了.
解答:解:(1)y=-x2+2mx-m2-m+3=-(x-m)2-m+3,
∴頂點(diǎn)坐標(biāo)為(m,-m+3),
∴頂點(diǎn)在直線y=-x+3上.

(2)∵拋物線與x軸交于M、N兩點(diǎn),
∴△>0,
即:(2m)2-4(m2+m-3)>0,
解得:m<3,
∵OM•ON=3,
∴m2+m-3=±3,
當(dāng)m2+m-3=-3時(shí),m2+m=0,
∴m=0,m=-1,
∴當(dāng)m=0時(shí),y1=-x2+3(與OM≠ON矛盾,舍),
∴m=-1,y1=-x2-2x+3,
當(dāng)m2+m-3=3時(shí),m2+m-6=0,
∴m=2,m=-3,
∴y2=-x2+4x-3,y3=-x2-6x-3.

(3)∵拋物線與y軸交點(diǎn)在原點(diǎn)的上方
∴y=-x2-2x+3,
∴C(-1,4),B(-1,0),
∵直線y=-x+3與x軸交于點(diǎn)A,
∴A(3,0),
∵BA=BC,
∴∠PCD=45°,
∴設(shè)PD=DC=x,
則PC=x,AD=4-x,
∵S△PAD=S△ABC
(4-x)•x=××4×4,x2-4x+4=0;
解得:x=2±2;
當(dāng)x=2+2時(shí),PC=x=4+2,
∴4-yP=4+2,
∴yP=-2
∴P(-1,-2),
當(dāng)x=2-2時(shí),PC=4-2,
∴yP=2
∴P(-1,2),
∴P(-1,2)或P(-1,-2).
點(diǎn)評(píng):本題主要考查了二次函數(shù)與一元二次方程的關(guān)系,一元二次方程根與系數(shù)的關(guān)系,二次函數(shù)解析式的確定,圖形面積的求法等知識(shí)點(diǎn).考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年北京市石景山區(qū)初中升學(xué)模擬考試試卷(解析版) 題型:解答題

(2004•石景山區(qū)模擬)已知:如圖,BC是半圓O的直徑,D、E是半圓O上兩點(diǎn),,CE的延長(zhǎng)線與BD的延長(zhǎng)線交于點(diǎn)A,過點(diǎn)E作EF⊥BC于點(diǎn)F,交CD與點(diǎn)G.
(1)求證:AE=DE;
(2)若AE=,cot∠ABC=,求DG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年北京市石景山區(qū)初中升學(xué)模擬考試試卷(解析版) 題型:解答題

(2004•石景山區(qū)模擬)列方程或方程組解應(yīng)用題:某商場(chǎng)銷售某種商品,第一個(gè)月將此商品的進(jìn)價(jià)加價(jià)20%作為銷售價(jià),共獲利6000元,第二個(gè)月商場(chǎng)搞促銷活動(dòng),將商品的進(jìn)價(jià)加價(jià)10%作為銷售價(jià),第二個(gè)月的銷售量比第一個(gè)增加了100件,并且商場(chǎng)第二個(gè)月比第一個(gè)月多獲利2000元,問此商品進(jìn)價(jià)是多少元商場(chǎng)第二個(gè)月共銷售多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年北京市石景山區(qū)初中升學(xué)模擬考試試卷(解析版) 題型:解答題

(2004•石景山區(qū)模擬)請(qǐng)看下面小明同學(xué)完成的一道證明題的思路:如圖1,已知△ABC中,AB=AC,CD⊥AB,垂足是D,P是BC邊上任意一點(diǎn),PE⊥AB,PF⊥AC,垂足分別是E、F.
求證:PE+PF=CD.
證明思路:
如圖2,過點(diǎn)P作PG∥AB交CD于G,則四邊形PGDE為矩形,PE=GD;又可證△PGC≌△CFP,則PF=CG;所以PE+PF=DG+GC=DC.若P是BC延長(zhǎng)線上任意一點(diǎn),其它條件不變,則PE、PF與CD有何關(guān)系?請(qǐng)你寫出結(jié)論并完成證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年北京市石景山區(qū)初中升學(xué)模擬考試試卷(解析版) 題型:選擇題

(2004•石景山區(qū)模擬)關(guān)于x的一元二次方程x2+3kx+k2-1=0的根的情況是( )
A.有兩個(gè)不相等的實(shí)數(shù)根
B.有兩個(gè)相等的實(shí)數(shù)根
C.沒有實(shí)數(shù)根
D.無法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案