已知四邊形ABCD的對角線AC、BD相交于點O,給出下列條件:①AB∥CD,②OA=OC,③AB=CD,④∠BAD=∠DCB,⑤AD∥BC.
(1)從以上5個條件中任意選取2個條件,能推出四邊形ABCD是平行四邊形的有(用序號表示)______;(至少寫出三種情況)
(2)從(1)中選出推理在兩步以上的一種情況進行證明.(要求畫出圖形,寫出證明過程即可)
【答案】分析:(1)根據(jù)平行四邊形的5種判定方法,能推出四邊形ABCD是平行四邊形的有①③,①⑤,①④,①②,②⑤,④⑤;
(2)可選①②或①④,加以證明即可.
解答:解:(1)①③,①⑤,①④,①②,②⑤,④⑤(寫出三種情況即可)
(2)解法一:若選①②,
如圖,∵AB∥CD,
∴∠ABD=∠BDC.
又∵OA=OC,∠AOB=∠COD,
∴△ABO≌△CDO.
∴BO=DO.
∴四邊形ABCD是平行四邊形.
解法二:若選①④.
如圖,∵AB∥CD,
∴∠ABD+∠BCD=180度.
又∵∠BAD=∠DCB,
∴∠ABC+∠BAD=180度.
∴AD∥BC.
∴四邊形ABCD是平行四邊形.
點評:本題考查了平行四邊形的判定,解答此類題的關鍵是要突破思維定勢的障礙,運用發(fā)散思維,多方思考,探究問題在不同條件下的不同結論,挖掘它的內(nèi)在聯(lián)系,向“縱、橫、深、廣”拓展,從而尋找出添加的條件和所得的結論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知四邊形ABCD的外接圓⊙O的半徑為2,對角線AC與BD的交點為E,AE=EC,AB=
2
AE,且BD=2
3
,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、已知四邊形ABCD的四邊分別有a,b,c,d.其中a,c是對邊且a2+b2+c2+d2=2ac+2bd,則四邊形是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC與△ADC關于直線AC對稱,連接BD,若已知四邊形ABCD的面積是125,AC=25,則BD的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知四邊形ABCD的對角線互相垂直,若適當添加一個條件,就能判定該四邊形是菱形.那么這個條件可以是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知四邊形ABCD的四個頂點的坐標分別為A(0,0),B(9,0),C(7,5),D(2,7),將該四邊形各頂點的橫坐標都增加2,縱坐標都增加3,其面積為(  )

查看答案和解析>>

同步練習冊答案