【題目】如圖1,四邊形是矩形,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.點(diǎn)從點(diǎn)出發(fā),沿以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),沿以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)重合時(shí)運(yùn)動(dòng)停止.設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)當(dāng)時(shí),線段的中點(diǎn)坐標(biāo)為________;
(2)當(dāng)與相似時(shí),求的值;
(3)當(dāng)時(shí),拋物線經(jīng)過、兩點(diǎn),與軸交于點(diǎn),拋物線的頂點(diǎn)為,如圖2所示.問該拋物線上是否存在點(diǎn),使,若存在,求出所有滿足條件的點(diǎn)坐標(biāo);若不存在,說明理由.
【答案】(1)的中點(diǎn)坐標(biāo)是;(2)或;(3),.
【解析】(1)先根據(jù)時(shí)間t=2,和速度可得動(dòng)點(diǎn)P和Q的路程OP和AQ的長(zhǎng),再根據(jù)中點(diǎn)坐標(biāo)公式可得結(jié)論;
(2)根據(jù)矩形的性質(zhì)得:∠B=∠PAQ=90°,所以當(dāng)△CBQ與△PAQ相似時(shí),存在兩種情況:
①當(dāng)△PAQ∽△QBC時(shí),,②當(dāng)△PAQ∽△CBQ時(shí),,分別列方程可得t的值;
(3)根據(jù)t=1求拋物線的解析式,根據(jù)Q(3,2),M(0,2),可得MQ∥x軸,∴KM=KQ,KE⊥MQ,畫出符合條件的點(diǎn)D,證明△KEQ∽△QMH,列比例式可得點(diǎn)D的坐標(biāo),同理根據(jù)對(duì)稱可得另一個(gè)點(diǎn)D.
(1)如圖1,∵點(diǎn)A的坐標(biāo)為(3,0),
∴OA=3,
當(dāng)t=2時(shí),OP=t=2,AQ=2t=4,
∴P(2,0),Q(3,4),
∴線段PQ的中點(diǎn)坐標(biāo)為:(,),即(,2);
故答案為:(,2);
(2)如圖1,∵四邊形OABC是矩形,
∴∠B=∠PAQ=90°
∴當(dāng)△CBQ與△PAQ相似時(shí),存在兩種情況:
①當(dāng)△PAQ∽△QBC時(shí),,
∴,
4t2-15t+9=0,
(t-3)(t-)=0,
t1=3(舍),t2=,
②當(dāng)△PAQ∽△CBQ時(shí),,
∴,
t2-9t+9=0,
t=,
∵0≤t≤6,>7,
∴x=不符合題意,舍去,
綜上所述,當(dāng)△CBQ與△PAQ相似時(shí),t的值是或;
(3)當(dāng)t=1時(shí),P(1,0),Q(3,2),
把P(1,0),Q(3,2)代入拋物線y=x2+bx+c中得:
,解得:,
∴拋物線:y=x2-3x+2=(x-)2-,
∴頂點(diǎn)k(,-),
∵Q(3,2),M(0,2),
∴MQ∥x軸,
作拋物線對(duì)稱軸,交MQ于E,
∴KM=KQ,KE⊥MQ,
∴∠MKE=∠QKE=∠MKQ,
如圖2,∠MQD=∠MKQ=∠QKE,設(shè)DQ交y軸于H,
∵∠HMQ=∠QEK=90°,
∴△KEQ∽△QMH,
∴,
∴,
∴MH=2,
∴H(0,4),
易得HQ的解析式為:y=-x+4,
則,
x2-3x+2=-x+4,
解得:x1=3(舍),x2=-,
∴D(-,);
同理,在M的下方,y軸上存在點(diǎn)H,如圖3,使∠HQM=∠MKQ=∠QKE,
由對(duì)稱性得:H(0,0),
易得OQ的解析式:y=x,
則,
x2-3x+2=x,
解得:x1=3(舍),x2=,
∴D(,);
綜上所述,點(diǎn)D的坐標(biāo)為:D(-,)或(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.如圖所示,已知△ABC和△BDE都是等邊三角形,下列結(jié)論:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等邊三角形;⑥FG∥AD,其中正確的有( )
A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=--x+8與x軸,y軸分別交于點(diǎn)A,點(diǎn)B,點(diǎn)D在y軸的負(fù)半軸上,若將△DAB沿直線AD折疊,點(diǎn)B恰好落在x軸正半軸上的點(diǎn)C處.
(1)求AB的長(zhǎng)和點(diǎn)C的坐標(biāo);
(2)求直線CD的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線L1:y=﹣x2+bx+c經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(5,0)已知直線l的解析式為y=kx﹣5.
(1)求拋物線L1的解析式、對(duì)稱軸和頂點(diǎn)坐標(biāo).
(2)若直線l將線段AB分成1:3兩部分,求k的值;
(3)當(dāng)k=2時(shí),直線與拋物線交于M、N兩點(diǎn),點(diǎn)P是拋物線位于直線上方的一點(diǎn),當(dāng)△PMN面積最大時(shí),求P點(diǎn)坐標(biāo),并求面積的最大值.
(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L(zhǎng)2
①直接寫出y隨x的增大而增大時(shí)x的取值范圍;
②直接寫出直線l與圖象L2有四個(gè)交點(diǎn)時(shí)k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料一:我們可以將任意三位數(shù)記為,(其中、、分別表示該數(shù)的百位數(shù)字,十位數(shù)字和個(gè)位數(shù)字,且),顯然.
材料二:若一個(gè)三位數(shù)的百位數(shù)字,十位數(shù)字和個(gè)位數(shù)字均不為0,則稱之為初始數(shù),比如123就是一個(gè)初始數(shù),將初始數(shù)的三個(gè)數(shù)位上的數(shù)字交換順序,可產(chǎn)生出5個(gè)新的初始數(shù),比如由123可以產(chǎn)生出132,213,231,312,321這5個(gè)新初始數(shù),這6個(gè)初始數(shù)的和成為終止數(shù).
(1)求初始數(shù)125生成的終止數(shù);
(2)若一個(gè)初始數(shù),滿足,且,記,,,若,求滿足條件的初始數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,圖形ABCD是由兩個(gè)二次函數(shù)y1=kx2+m(k<0)與y2=ax2+b(a>0)的部分圖象圍成的封閉圖形.已知A(1,0)、B(0,1)、D(0,﹣3).
(1)直接寫出這兩個(gè)二次函數(shù)的表達(dá)式;
(2)判斷圖形ABCD是否存在內(nèi)接正方形(正方形的四個(gè)頂點(diǎn)在圖形ABCD上),并說明理由;
(3)如圖2,連接BC,CD,AD,在坐標(biāo)平面內(nèi),求使得△BDC與△ADE相似(其中點(diǎn)C與點(diǎn)E是對(duì)應(yīng)頂點(diǎn))的點(diǎn)E的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年是全面建成小康社會(huì)收官之年,某扶貧幫扶小組積極響應(yīng),對(duì)農(nóng)民實(shí)施精準(zhǔn)扶貧.某農(nóng)戶老張家種植花椒和黑木耳兩種干貨共800千克,扶貧小組通過市場(chǎng)調(diào)研發(fā)現(xiàn),花椒市場(chǎng)價(jià)60元/千克,黑木耳市場(chǎng)價(jià)48元/千克,老張全部售完可以收入4.2萬元.已知老張種植花椒成本需25元/千克,種植木耳成本需35元/千克,根據(jù)脫貧目標(biāo)任務(wù)要求,老張種植花椒和黑木耳的兩種干貨的純收入(銷售收入-種植成本)在2萬元以上才可以順利脫貧.請(qǐng)你分析一下扶貧幫扶小組是否能幫助老張順利脫貧.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)、分別在梯形的兩腰、上,且,若,,,則的值為( )
A. 15.6 B. 15 C. 19 D. 無法計(jì)算
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com