【題目】從圖所示的風箏中可以抽象出幾何圖形,我們把這種幾何圖形叫做“箏形”.

具體定義如下:如圖,在四邊形中, , ,我們把這種兩組鄰邊分別相等的四邊形叫做“箏形”.

)結合圖,通過觀察、測量、折紙,可以猜想“箏形”具有諸如“平分”這樣的性質,請結合圖形,再寫出兩條“箏形”的性質.

①____________________________.

②____________________________.

)從你寫出的兩條性質中,任選一條“箏形”的性質給出證明.

【答案】, .()見解析

【解析】試題分析:1①一組對角相等,∠ABC=ADC;AC垂直平分BD,OB=OD,BDAC;2)證明∠ABC=ADC,由已知條件不難證明△ABC≌△ADC,即可證明∠ABC=ADC

試題解析:

1①一組對角相等,∠ABC=ADC

AC垂直平分BD,OB=ODBDAC

2)證明:∠ABC=ADC,

證:在△ABC和△ADC中,

,

∴△ABC≌△ADCSSS),

∴∠ABC=ADC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】愛我中華中學生演講比賽中,五位評委分別給甲、乙兩位選手的評分如下:甲:8,7,9,88;乙:7,9,6,9,9,則下列說法中錯誤的是( )

A. 甲、乙得分的平均數(shù)都是8 B. 甲得分的眾數(shù)是8,乙得分的眾數(shù)是9

C. 甲得分的中位數(shù)是9,乙得分的中位數(shù)是6 D. 甲得分的方差比乙得分的方差小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,則(m﹣1)2+(n﹣1)2的最小值是( 。
A.6
B.3
C.﹣3
D.0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一單位長度為1cm的方格紙上,依如圖所示的規(guī)律,設定點A1、A2、A3、A4、A5、A6、A7、…、An,連接點O、A1、A2組成三角形,記為1,連接O、A2、A3組成三角形,記為2,連O、An、An+1組成三角形,記為n(n為正整數(shù)),請你推斷,當n50時,n的面積=( )cm2.

A. 1275 B. 2500 C. 1225 D. 1250

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,點E、P在邊AB上,且AE=BP,過點E、P作BC的平行線,分別交AC于點F、Q,記△AEF的面積為S1 , 四邊形EFQP的面積為S2 , 四邊形PQCB的面積為S3

(1)求證:EF+PQ=BC;
(2)若S1+S3=S2 , 求的值;
(3)若S3﹣S1=S2 , 直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個含有多個字母的式子中,如果任意交換兩個字母的位置,式子的值都不變,這樣的式子就叫做對稱式.例如: , , ,

含有兩個字母, 的對稱式的基本對稱式是,像, 等對稱式都可以用表示,例如:

請根據(jù)以上材料解決下列問題:

)式子,中,屬于對稱式的是__________(填序號).

)已知

, ,求對稱式的值.

,直接寫出對稱式的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五個點,拋物線y=a(x-1)2+k(a>0)經過其中的三個點.
(1)求證:C、E兩點不可能同時在拋物線y=a(x-1)2+k(a>0)上;
(2)點A在拋物線y=a(x-1)2+k(a>0)上嗎?為什么?
(3)求a和k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=2,E是AD邊上一點(點E與點A,D不重合).BE的垂直平分線交AB于M,交DC于N.

(1)設AE=x,四邊形ADNM的面積為S,寫出S關于x的函數(shù)關系式;
(2)當AE為何值時,四邊形ADNM的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段ABCD的公共部分BD=AB= CD線段AB、CD的中點E,F之間距離是10cmAB,CD的長

查看答案和解析>>

同步練習冊答案