【題目】如圖,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,若AE=24,DE=17.
(1)求證:△CAD≌△CBE;
(2)求線段AB的長度.
【答案】(1)見解析;(2)AB=25
【解析】
(1)由SAS證明△CDA≌△CEB即可;
(2)根據(jù)全等三角形的性質(zhì)可得∠CAD=∠CBE,AD=BE,然后推導(dǎo)出△AEB為直角三角形,再根據(jù)勾股定理解答即可.
(1)證明:∵△ACB和△DCE均為等腰直角三角形,
∴∠ACB=∠DCE=90°,CA=CB,CD=CE,
∴∠ACD=∠BCE,
在△CAD和△CBE中,
,
∴△CAD≌△CBE(SAS);
(2)解:由(1)得:△ACD≌△BCE(SAS),
∴∠CAD=∠CBE,AD=BE,
又∵∠CAD+∠BAE+∠ABC=90°,
∴∠CBE+∠BAE+∠ABC=90°,
∴∠AEB=90°,
∵AE=24,DE=17,
∴AD=AE﹣DE=7,
在Rt△ABE中,
∴AB2=AE2+BE2=AE2+AD2=242+72=625,
∴AB=25
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)D,拋物線頂點(diǎn)為H(1,2).
(1)求拋物線的解析式;
(2)點(diǎn)P為直線AD上方拋物線的對(duì)稱軸上一動(dòng)點(diǎn),連接PA,PD.當(dāng)S△PAD=3,若在x軸上存在一動(dòng)點(diǎn)Q,使PQ+QB最小,求此時(shí)點(diǎn)Q的坐標(biāo)及PQ+QB的最小值;
(3)若點(diǎn)E為拋物線上的動(dòng)點(diǎn),點(diǎn)G,F(xiàn)為平面內(nèi)的點(diǎn),以BE為邊構(gòu)造以B,E,F(xiàn),G為頂點(diǎn)的正方形,當(dāng)頂點(diǎn)F或者G恰好落在y軸上時(shí),求點(diǎn)E的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖,點(diǎn)為線段外一動(dòng)點(diǎn),且,若,,連接,求的最大值.解決方法:以為邊作等邊,連接,推出,當(dāng)點(diǎn)在的延長線上時(shí),線段取得最大值.
問題解決:如圖,點(diǎn)為線段外一動(dòng)點(diǎn),且,若,,連接,當(dāng)取得最大值時(shí),的度數(shù)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是□ABCD的邊BC延長線上一點(diǎn),AE交CD于點(diǎn)F,FG∥AD交AB于點(diǎn)G.
(1)填空:圖中與△CEF相似的三角形有__________;(寫出圖中與△CEF相似的所有三角形)
(2)從(1)中選出一個(gè)三角形,并證明它與△CEF相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面真角坐標(biāo)系中,點(diǎn)A.B的坐標(biāo)分別為A(a,0),B(b,0),且a,b滿足|a+1|+=0,點(diǎn)C的坐標(biāo)為(0,3).
(1)求a,b的值及S△ABC;
(2)若點(diǎn)M在x軸上,且S△ACM=S△ABC,試求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中有5個(gè)點(diǎn):A(1,1),B(-3,-1),C(-3,1),
D(-2,-2),E(0,-3)。
(1)畫出△ABC的外接圓⊙P,并指出點(diǎn)D與⊙P的位置關(guān)系;
(2)若直線l經(jīng)過點(diǎn)D(-2,-2),E(0,-3),判斷直線l與⊙P的位置關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC的邊AB=5,AC=4,BC=3,矩形DEFG的四個(gè)頂點(diǎn)都在Rt△ABC的邊上,當(dāng)矩形DEFG的面積最大時(shí),其對(duì)角線的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程
(1)求證:不論k取什么實(shí)數(shù)值,這個(gè)方程總有實(shí)數(shù)根;
(2)若等腰三角形ABC的一邊長為,另兩邊的長b、c恰好是這個(gè)方程的兩個(gè)根,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在銳角三角形ABC中,AB=8,AC=5,BC=6,沿過點(diǎn)B的直線折疊這個(gè)三角形,使點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,下列結(jié)論:①∠CBD=∠EBD,②DE⊥AB,③三角形ADE的周長是7,④,⑤.其中正確的個(gè)數(shù)有( )
A.2B.3C.4D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com