【題目】多項(xiàng)式x2+(k﹣3)x+9是完全平方式,則k的值是_____

【答案】9或﹣3

【解析】

利用完全平方公式計(jì)算即可求出k的值.

∵多項(xiàng)式x2+k﹣3)x+9是完全平方式,

k﹣3=±6,

解得:k=9k=﹣3,

故答案為:9或﹣3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖像交軸于,交軸于點(diǎn),連接直線.

(1)求二次函數(shù)的解析式;

(2)點(diǎn)在二次函數(shù)的圖像上,圓與直線相切,切點(diǎn)為.

①若軸的左側(cè),且△∽△,求點(diǎn)的坐標(biāo);

②若圓的半徑為4,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情況,根據(jù)以往的學(xué)習(xí)經(jīng)驗(yàn),他想到了方程與函數(shù)的關(guān)系,一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點(diǎn)的橫坐標(biāo)即為一元一次方程kx+b(k≠0)的解,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交點(diǎn)的橫坐標(biāo)即為一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函數(shù)y=x2﹣2x﹣3的圖象與x軸的交點(diǎn)為(﹣1,0)和(3,0),交點(diǎn)的橫坐標(biāo)﹣1和3即為x2﹣2x﹣3=0的解.

根據(jù)以上方程與函數(shù)的關(guān)系,如果我們直到函數(shù)y=x3+2x2﹣x﹣2的圖象與x軸交點(diǎn)的橫坐標(biāo),即可知方程x3+2x2﹣x﹣2=0的解.

佳佳為了解函數(shù)y=x3+2x2﹣x﹣2的圖象,通過(guò)描點(diǎn)法畫出函數(shù)的圖象.

x

﹣3

﹣2

﹣1

0

1

2

y

﹣8

0

m

﹣2

0

12

(1)直接寫出m的值,并畫出函數(shù)圖象;

(2)根據(jù)表格和圖象可知,方程的解有   個(gè),分別為   ;

(3)借助函數(shù)的圖象,直接寫出不等式x3+2x2>x+2的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)CAB的延長(zhǎng)線上,CDO相切于點(diǎn)D,CEAD,交AD的延長(zhǎng)線于點(diǎn)E

1)求證:BDC=A;

2)若CE=4DE=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉辦八年級(jí)學(xué)生數(shù)學(xué)素養(yǎng)大賽,比賽共設(shè)四個(gè)項(xiàng)目:七巧板拼圖,趣題巧解,數(shù)學(xué)應(yīng)用,魔方復(fù)原,每個(gè)項(xiàng)目得分都按一定百分比折算后記入總分,下表為甲,乙,丙三位同學(xué)得分情況(單位:分)

七巧板拼圖

趣題巧解

數(shù)學(xué)應(yīng)用

魔方復(fù)原

66

89

86

68

66

60

80

68

66

80

90

68


(1)比賽后,甲猜測(cè)七巧板拼圖,趣題巧解,數(shù)學(xué)應(yīng)用,魔方復(fù)原這四個(gè)項(xiàng)目得分分別按10%,40%,20%,30%折算△記入總分,根據(jù)猜測(cè),求出甲的總分;
(2)本次大賽組委會(huì)最后決定,總分為80分以上(包含80分)的學(xué)生獲一等獎(jiǎng),現(xiàn)獲悉乙,丙的總分分別是70分,80分.甲的七巧板拼圖、魔方復(fù)原兩項(xiàng)得分折算后的分?jǐn)?shù)和是20分,問(wèn)甲能否獲得這次比賽的一等獎(jiǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視塔AB和樓CD的水平距離為100 m,從樓頂C處及樓底D處測(cè)得塔頂A的仰角分別為45°和60°,試求樓高和電視塔高(精確到0.1 m).(

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分10分)如圖,BD是O的直徑,點(diǎn)A是劣弧BC的中點(diǎn),DF是O的切線交BC于點(diǎn)F,AD交BC于點(diǎn)E.

(1)求證:EF=DF;

(2)若AE=2,ED=4,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△AOB與△COD關(guān)于點(diǎn)O成中心對(duì)稱,連接BC,AD.

(1)求證:四邊形ABCD為平行四邊形;
(2)若△AOB的面積為15cm2,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列長(zhǎng)度的三條線段,能組成三角形的是( 。

A.2,24B.5,6,12C.57,2D.68,10

查看答案和解析>>

同步練習(xí)冊(cè)答案