(1999•黃岡)已知拋物線y=x2+3mx+18m2-m與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于點C(0,b),O為原點.
(1)求m的取值范圍;
(2)若m,且OA+OB=3OC,求拋物線解析式及A,B,C的坐標;
(3)在(2)情形下,點P、Q分別從A、O兩點同時出發(fā)(如圖)以相同的速度沿AB、OC向B、C運動,連接PQ與BC交于M,設(shè)AP=k,問是否存在k值,使以P、B、M為頂點的三角形與△ABC相似?若存在,求所有k值;若不存在,請說明理由.

【答案】分析:(1)由于拋物線y=x2+3mx+18m2-m與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,則判別式△>0,解此不等式即可求出m的取值范圍;
(2)由拋物線與一元二次方程的關(guān)系以及OA+OB=3OC,可求出m的值,進而求出拋物線的解析式及A,B,C的坐標;
(3)根據(jù)題意,當以P、B、M為頂點的三角形與△ABC相似時,由于點B與點B對應(yīng),則分兩種情況.①P與A對應(yīng),②P與C對應(yīng).對于前一種情形,得到PQ∥AC,運用平行線分線段成比例定理可求出k值;對于后一種情形,得到△ABC∽△MBP,運用三角函數(shù)的定義及相似三角形的對應(yīng)邊成比例可求出k值.
解答:解:(1)依題意有△=(3m)2-4×(18m2-m)=m>0,
∴m>0;(3分)

(2)∵m,∴x1<0,x2<0,
由OA+OB=3•OC,有-x1-x2=3(18m2-m),
24m=3(18m2-m),
∴m=0(舍去)或m=
∴y=x2+.(6分)
∴A(-8,0),B(-4,0),C(0,4);(7分)

(3)當PQ∥AC時,△ABC∽△PBM,
,
(9分)
當PQ不與AC平行,
∠CAB=∠PMB時,△ABC∽△MBP.
過B作AC的垂線,D為垂足.
sinA=(10分)
∵∠ACB=∠MPB,∴Rt△CDB∽Rt△POQ.(11分)


顯然0<k<4.
=,∴
∴k=2.
∴存在k符合題目條件,即當k=或2時,
所得三角形與△ABC相似.(13分)
點評:本題主要考查了二次函數(shù)與一元二次方程的關(guān)系,三角函數(shù)的定義,相似三角形的性質(zhì)等知識,綜合性較強,難度較大.(3)題中,要根據(jù)相似三角形對應(yīng)邊和對應(yīng)角的不同分類討論,不要漏解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(02)(解析版) 題型:解答題

(1999•黃岡)已知拋物線y=x2+3mx+18m2-m與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于點C(0,b),O為原點.
(1)求m的取值范圍;
(2)若m,且OA+OB=3OC,求拋物線解析式及A,B,C的坐標;
(3)在(2)情形下,點P、Q分別從A、O兩點同時出發(fā)(如圖)以相同的速度沿AB、OC向B、C運動,連接PQ與BC交于M,設(shè)AP=k,問是否存在k值,使以P、B、M為頂點的三角形與△ABC相似?若存在,求所有k值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(1999•黃岡)已知拋物線y=x2+3mx+18m2-m與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于點C(0,b),O為原點.
(1)求m的取值范圍;
(2)若m,且OA+OB=3OC,求拋物線解析式及A,B,C的坐標;
(3)在(2)情形下,點P、Q分別從A、O兩點同時出發(fā)(如圖)以相同的速度沿AB、OC向B、C運動,連接PQ與BC交于M,設(shè)AP=k,問是否存在k值,使以P、B、M為頂點的三角形與△ABC相似?若存在,求所有k值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年湖北省黃岡市中考數(shù)學試卷(解析版) 題型:解答題

(1999•黃岡)已知拋物線y=x2+3mx+18m2-m與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于點C(0,b),O為原點.
(1)求m的取值范圍;
(2)若m,且OA+OB=3OC,求拋物線解析式及A,B,C的坐標;
(3)在(2)情形下,點P、Q分別從A、O兩點同時出發(fā)(如圖)以相同的速度沿AB、OC向B、C運動,連接PQ與BC交于M,設(shè)AP=k,問是否存在k值,使以P、B、M為頂點的三角形與△ABC相似?若存在,求所有k值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年湖北省黃岡市中考數(shù)學試卷(解析版) 題型:填空題

(1999•黃岡)已知y=y1-y2,y1與x2成正比例,y2與x成反比例,當x=1時y=3,x=-1時y=7,則當x=2時,y的值是   

查看答案和解析>>

同步練習冊答案