如圖,某廣場一燈柱AB被一鋼纜CD固定,CD與地面成37°夾角,且CB=4米.
(1)求鋼纜CD的長度;
(2)若AD=2.1米,燈的頂端E距離A處1.8米,且∠EAB=120°,則燈的頂端E距離地面多少米? (參考數(shù)據(jù):sing37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(1)CD=5米;(2)燈的頂端E距離地面6米.

試題分析:(1)根據(jù)三角函數(shù)可求得CD;
(2)過點E作EF⊥AB于點F.由∠EAB=120°,得∠EAF=60°,再根據(jù)三角函數(shù)求得AF,即可.
試題解析:(1)在Rt△DCB中,sin∠DCB==0.6,
∴設(shè)DB=3x,DC=5x,
∴(3x)2+16=(5x)2
解得x=±1(負(fù)值舍去),
∴CD=5米,DB=3米;
(2)如圖,過點E作EF⊥AB于點F.

∵∠EAB=120°,
∴∠EAF=60°,
∴AF=AE•cos∠EAF=1.8×=0.9(米),
∴FB=AF+AD+DB=0.9+2.1+3=6(米).
∴燈的頂端E距離地面6米.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:計算題

計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在等邊三角形ABC中,AD⊥BC于點D.
(1)如圖1,請你直接寫出線段AD與BC之間的數(shù)量關(guān)系: AD=     BC;
(2)如圖2,若P是線段BC上一個動點(點P不與點B、C重合),聯(lián)結(jié)AP,將線段AP繞點A逆時針旋轉(zhuǎn)60°,得到線段AE,聯(lián)結(jié)CE,猜想線段AD、CE、PC之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,若點P是線段BC延長線上一個動點,(2)中的其他條件不變,按照(2)中的作法,請在圖3中補全圖形,并直接寫出線段AD、CE、PC之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1是一張折疊椅子,圖2是其側(cè)面示意圖,已知椅子折疊時長1.2米,椅子展開后最大張角∠CBD=37°,且BD=BC,AB:BG:GC=1:2:3,座面EF與地面平行,當(dāng)展開角最大時,請解答下列問題:
(1)求∠CGF的度數(shù);
(2)求座面EF與地面之間的距離。(可用計算器計算,結(jié)果保留兩個有效數(shù)字,參考數(shù)據(jù):sin71.5°≈0.948,cos71.5°≈0.317,tan71.5°≈2.989

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一貨輪在海上由西往東行駛,從A、B兩個小島中間穿過.當(dāng)貨輪行駛到點P處時,測得小島A在正北方向,小島B位于南偏東24.5°方向;貨輪繼續(xù)前行12海里,到達(dá)點Q處,又測得小島A位于北偏西49°方向,小島B位于南偏西41°方向.
(1)線段BQ與PQ是否相等?請說明理由;
(2)求A,B間的距離.(參考數(shù)據(jù)cos41°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一位青田華僑回鄉(xiāng)訪祖觀光.他驅(qū)車到仙都游玩,在如圖的一條南北走向的公路l上,汽車自A處由南向北前行時,車載GPS(全球衛(wèi)星定位系統(tǒng))顯示石筍C在他西北方向上,他繼續(xù)向北前進(jìn)4千米到達(dá)B時,發(fā)現(xiàn)石筍C在他南偏西60°的方向上.
(1)試在圖形中作出石筍C到公路l的最短路徑;
(2)求出石筍C到公路l的最短路徑約為多少米?(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在Rt中,,若,則的值是(     )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠AC B =90°,∠A<∠B,以AB邊上的中線CM為折痕將△ACM折疊,使點A落在點D處,如果CD恰好與AB垂直,則tanA=         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:計算題

計算:-(5-π)0+4cos45°.

查看答案和解析>>

同步練習(xí)冊答案