6.已知關(guān)于x的分式方程$\frac{2x-m}{x+1}$=3的解是正數(shù),那么字母m的取值范圍是m<-3.

分析 先分式方程求解,然后令x>0且x+1≠0即可求出m的范圍

解答 解:2x-m=3x+3
∴2x-3x=m+3
∴x=-m-3
∵x>0,且x+1≠0,
∴x>0
∴-m-3>0
∴m<-3
故答案為:m<-3

點(diǎn)評 本題考查分式方程的解法,涉及不等式的解法,屬于基礎(chǔ)題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.化簡求值:1-2(x-$\frac{1}{3}$y3)+(-x+$\frac{1}{3}$y3),其中x=-$\frac{2}{3}$,y=-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.已知a、b、c是△ABC的三邊的長,且滿足a2+b2+c2=ab+bc+ac,關(guān)于此三角形的形狀有下列判斷:①是銳角三角形;②是直角三角形;③是鈍角三角形;④是等邊三角形,其中正確說法的個(gè)數(shù)是( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(2x+y-3,x-2y),它關(guān)于x軸的對稱點(diǎn)A1的坐標(biāo)為(x+3,y-4),關(guān)于y軸的對稱點(diǎn)為A2
(1)求A1、A2的坐標(biāo);
(2)證明:O為線段A1A2的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.某市對市民看展了有關(guān)霧霾的調(diào)查問卷,調(diào)查內(nèi)容是“你認(rèn)為哪種措施治理霧霾最有效”,有以下四個(gè)選項(xiàng):
A:綠化造林             B:汽車限行 
C:拆除燃煤小鍋爐  D:使用清潔能源.
調(diào)查過程隨機(jī)抽取了部分市民進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖,請回答下列問題:
(1)這次被調(diào)查的市民共有多少人?
(2)請你將統(tǒng)計(jì)圖1補(bǔ)充完整;
(3)求圖2中D項(xiàng)目對應(yīng)的扇形的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線y=x2-(2m+1)x+m2+m-2(m是常數(shù)).
(1)求證:無論m為何值,拋物線與x軸總有兩個(gè)交點(diǎn);
(2)若拋物線與x軸兩交點(diǎn)分別為A(x1,0),B(x2,0)(x1>x2),且AB=1+$\frac{m+1}{m-1}$,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,下列4個(gè)三角形中,均有AB=AC,則經(jīng)過三角形的一個(gè)頂點(diǎn)的一條直線能夠?qū)⑦@個(gè)三角形分成兩個(gè)小等腰三角形的是(  )
A.①③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.一條單車道的拋物線形隧道如圖所示.隧道中公路的寬度AB=8m,隧道的最高點(diǎn)C到公路的距離為6m.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線的表達(dá)式;
(2)現(xiàn)有一輛貨車的高度是4.4m,貨車的寬度是2m,為了保證安全,車頂距離隧道頂部至少0.5m,通過計(jì)算說明這輛貨車能否安全通過這條隧道.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.已知二次函數(shù)y1=ax2+bx+c(a≠0)和一次函數(shù)y2=kx+n(k≠0)的圖象如圖所示,下面有四個(gè)推斷:
①二次函數(shù)y1有最大值
②二次函數(shù)y1的圖象關(guān)于直線x=-1對稱
③當(dāng)x=-2時(shí),二次函數(shù)y1的值大于0
④過動(dòng)點(diǎn)P(m,0)且垂直于x軸的直線與y1,y2的圖象的交點(diǎn)分別為C,D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),m的取值范圍是m<-3或m>-1.
其中正確的是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步練習(xí)冊答案