【題目】如圖,A(1,0),B(4,0),M(5,3).動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿x軸以每秒1個(gè)單位長的速度向右移動(dòng),且過點(diǎn)P的直線l:y=-x+b也隨之移動(dòng).設(shè)移動(dòng)時(shí)間為t秒.
(1)當(dāng)t=1時(shí),求l的解析式;
(2)若l與線段BM有公共點(diǎn),確定t的取值范圍;
(3)直接寫出t為何值時(shí),點(diǎn)M關(guān)于l的對(duì)稱點(diǎn)落在y軸上.如不存在,請(qǐng)說明理由.
【答案】(1)y=-x+2 (2)3≤t≤7 (3)t為2時(shí),點(diǎn)M關(guān)于l的對(duì)稱點(diǎn)落在y軸上.
【解析】
(1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,求出一次函數(shù)的解析式;
(2)分別求出直線l經(jīng)過點(diǎn)B、點(diǎn)M時(shí)的t值,即可得到t的取值范圍;
(3)找出點(diǎn)M關(guān)于直線l在y軸上的對(duì)稱點(diǎn)C,如解答圖所示.求出點(diǎn)C的坐標(biāo),然后求出MC中點(diǎn)坐標(biāo),最后求出t的值.
解:(1)直線y=-x+b交x軸于點(diǎn)P(1+t,0),
由題意,得b>0,t≥0,.
當(dāng)t=1時(shí),-2+b=0,解得b=2,
故y=-x+2.
(2)當(dāng)直線y=-x+b過點(diǎn)B(4,0)時(shí),
0=-4+b,
解得:b=4,
0=-(1+t)+4,
解得t=3.
當(dāng)直線y=-x+b過點(diǎn)M(5,3)時(shí),
3=-5+b,
解得:b=8,
0=-(1+t)+8,
解得t=7.
故若l與線段BM有公共點(diǎn),t的取值范圍是:3≤t≤7.
(3)如圖,
過點(diǎn)M作MC⊥直線l,交y軸于點(diǎn)C,交直線l于點(diǎn)D,則點(diǎn)C為點(diǎn)M在坐標(biāo)軸上的對(duì)稱點(diǎn).
設(shè)直線MC的解析式為y=x+m,則
3=5+m,解得m=-2,
故直線MC的解析式為y=x-2.
當(dāng)x=0時(shí),y=0-2=-2,
則C點(diǎn)坐標(biāo)為(0,-2),
∵(0+5)÷2=2.5,
(3-2)÷2=0.5,
∴D點(diǎn)坐標(biāo)為(2.5,0.5),
當(dāng)直線y=-x+b過點(diǎn)D(2.5,0.5)時(shí),
0.5=-2.5+b,
解得:b=3,
0=-(1+t)+3,
解得t=2.
∴t為2時(shí),點(diǎn)M關(guān)于l的對(duì)稱點(diǎn)落在y軸上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)和 的圖象分別為直線、過點(diǎn)作軸的垂線交于點(diǎn),過點(diǎn) 作軸的垂線交直線于點(diǎn) ,過點(diǎn) 作 軸的垂線交 于點(diǎn),過點(diǎn)作 軸的垂線交直線 于點(diǎn) ,…,依次進(jìn)行下去,則點(diǎn) 的橫坐標(biāo)為 _________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3(a≠0)的頂點(diǎn)為E,該拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且BO=OC=3AO,直線y=﹣x+1與y軸交于點(diǎn)D.
(1)求拋物線的解析式;
(2)證明:△DBO∽△EBC;
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PBC是等腰三角形?若存在,請(qǐng)直接寫出符合條件的P點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)拋物線過點(diǎn)和,對(duì)稱軸為直線.
(1)求二次函數(shù)的表達(dá)式和頂點(diǎn)的坐標(biāo).
(2)將拋物線在坐標(biāo)平面內(nèi)平移,使其過原點(diǎn),若在平移后,第二象限的拋物線上存在點(diǎn),使為等腰直角三角形,請(qǐng)求出拋物線平移后的表達(dá)式,并指出其中一種情況的平移方式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c經(jīng)過點(diǎn)A,點(diǎn)B,與y軸負(fù)半軸交于點(diǎn)C,且OC=OB,其中B點(diǎn)坐標(biāo)為(3,0),對(duì)稱軸為直線x=.
(1)求拋物線的解析式;
(2)在x軸上方有一點(diǎn)P(m,n),連接PA后滿足∠PAB=∠CAB,記△PBC面積為S,求S與m的函數(shù)關(guān)系;
(3)在(2)的條件下,當(dāng)點(diǎn)P恰好落在拋物上時(shí),將直線BC上下平移,平移后的直線y=x+t與拋物線交于C',B'兩點(diǎn)(C'在B'的左側(cè)),若以點(diǎn)C'、B'、P為頂點(diǎn)三角形是直角三角形,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形紙片ABCD中,EF∥AB,M,N是線段EF的兩個(gè)動(dòng)點(diǎn),且MN=EF,若把該正方形紙片卷成一個(gè)圓柱,使點(diǎn)A與點(diǎn)B重合,若底面圓的直徑為6cm,則正方形紙片上M,N兩點(diǎn)間的距離是____________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,一次函數(shù)y=-2x與二次函數(shù)y=ax2+2ax+c的圖像交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與其對(duì)稱軸交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)設(shè)二次函數(shù)圖像的頂點(diǎn)為D,點(diǎn)C與點(diǎn)D關(guān)于 x軸對(duì)稱,且△ACD的面積等于2.
① 求二次函數(shù)的解析式;
② 在該二次函數(shù)圖像的對(duì)稱軸上求一點(diǎn)P(寫出其坐標(biāo)),使△PBC與△ACD相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市用5 000元購進(jìn)一批新品種的蘋果進(jìn)行試銷,由于銷售狀況良好,超市又調(diào)撥11 000元資金購進(jìn)該品種蘋果,但這次的進(jìn)貨價(jià)比試銷時(shí)每千克多了0.5元,購進(jìn)蘋果數(shù)量是試銷時(shí)的2倍.
(1)試銷時(shí)該品種蘋果的進(jìn)貨價(jià)是每千克多少元?
(2)如果超市將該品種蘋果按每千克7元的定價(jià)出售,當(dāng)大部分蘋果售出后,余下的蘋果定價(jià)為4元,超市在這兩次蘋果銷售中的盈利不低于4 100元,那么余下的蘋果最多多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點(diǎn)E是AD的中點(diǎn),連接BE、CE,CE與BD相交于點(diǎn)H,連接AH,交BE于點(diǎn)G,則GH的長為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com