【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)y1= 的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,3)和B(﹣3,m).
(1)求反比例函數(shù)y1= 和一次函數(shù)y2=ax+b的表達(dá)式;
(2)點(diǎn)C 是坐標(biāo)平面內(nèi)一點(diǎn),BC∥x 軸,AD⊥BC 交直線BC 于點(diǎn)D,連接AC.若AC= CD,求點(diǎn)C的坐標(biāo).

【答案】
(1)解:)∵反比例函數(shù)y1= 的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,3)和B(﹣3,m),

∴點(diǎn)A(1,3)在反比例函數(shù)y1= 的圖象上,

∴k=1×3=3,

∴反比例函數(shù)的表達(dá)式為y1=

∵點(diǎn)B(﹣3,m)在反比例函數(shù)y1= 的圖象上,

∴m= =﹣1.

∵點(diǎn)A(1,3)和點(diǎn)B(﹣3,﹣1)在一次函數(shù)y2=ax+b的圖象上,

,解得:

∴一次函數(shù)的表達(dá)式為y2=x+2


(2)解:依照題意畫出圖形,如圖所示.

∵BC∥x軸,

∴點(diǎn)C的縱坐標(biāo)為﹣1,

∵AD⊥BC于點(diǎn)D,

∴∠ADC=90°.

∵點(diǎn)A的坐標(biāo)為(1,3),

∴點(diǎn)D的坐標(biāo)為(1,﹣1),

∴AD=4,

∵在Rt△ADC中,AC2=AD2+CD2,且AC= CD,

,解得:CD=2.

∴點(diǎn)C1的坐標(biāo)為(3,﹣1),點(diǎn)C2的坐標(biāo)為(﹣1,﹣1).

故點(diǎn)C的坐標(biāo)為(﹣1,﹣1)或(3,﹣1)


【解析】(1)由點(diǎn)A在反比例函數(shù)圖象上,利用待定系數(shù)法可求出反比例函數(shù)的表達(dá)式,由點(diǎn)B在反比例函數(shù)圖象上,可求出點(diǎn)B的坐標(biāo),由點(diǎn)A、B的坐標(biāo)利用待定系數(shù)法即可求出一次函數(shù)的表達(dá)式;(2)由BC∥x軸結(jié)合點(diǎn)B的坐標(biāo)可得出點(diǎn)C的縱坐標(biāo),再由點(diǎn)A的坐標(biāo)結(jié)合AD⊥BC于點(diǎn)D,即可得出點(diǎn)D的坐標(biāo),即得出線段AD的長(zhǎng),在Rt△ADC中,由勾股定理以及線段AC、CD間的關(guān)系可求出線段CD的長(zhǎng),再結(jié)合點(diǎn)D的坐標(biāo)即可求出點(diǎn)C的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)鋼筋三角形框架三邊長(zhǎng)分別為20厘米,50厘米、60厘米,現(xiàn)要再做一個(gè)與其相似的鋼筋三角形框架,而只有長(zhǎng)是30厘米和50厘米的兩根鋼筋,要求以其中一根為邊,從另一根上截下兩段(允許有余料)作為兩邊,則不同的截法有( 。.
A.一種
B.二種
C.三種
D.四種

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長(zhǎng)為2cm的正方形ABCD沿其對(duì)角線AC剪開,再把△ABC沿著AD方向平移,得到△ABC′,若兩個(gè)三角形重疊部分的面積為1cm2 , 則它移動(dòng)的距離AA′等于( 。
A.0.5cm
B.1cm
C.1.5cm
D.2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知A、B、C、D四點(diǎn)的坐標(biāo)依次為(0,0)、(6,0)(8,6)、(2,6),若一次函數(shù)y=mx﹣6m的圖象將四邊形ABCD的面積分成1:3兩部分,則m的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一列有序數(shù)對(duì):(1,2),(4,5),(9,10),(16,17),…,按此規(guī)律,第5對(duì)有序數(shù)對(duì)為;若在平面直角坐標(biāo)系xOy中,以這些有序數(shù)對(duì)為坐標(biāo)的點(diǎn)都在同一條直線上,則這條直線的表達(dá)式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系 xOy中,對(duì)于點(diǎn)P(x,y),以及兩個(gè)無公共點(diǎn)的圖形W1和W2 , 若在圖形W1和W2上分別存在點(diǎn)M (x1 , y1 )和N (x2 , y2 ),使得P是線段MN的中點(diǎn),則稱點(diǎn)M 和N被點(diǎn)P“關(guān)聯(lián)”,并稱點(diǎn)P為圖形W1和W2的一個(gè)“中位點(diǎn)”,此時(shí)P,M,N三個(gè)點(diǎn)的坐標(biāo)滿足x= ,y=
(1)已知點(diǎn)A(0,1),B(4,1),C(3,﹣1),D(3,﹣2),連接AB,CD.
①對(duì)于線段AB和線段CD,若點(diǎn)A和C被點(diǎn)P“關(guān)聯(lián)”,則點(diǎn)P的坐標(biāo)為
②線段AB和線段CD的一“中位點(diǎn)”是Q (2,﹣ ),求這兩條線段上被點(diǎn)Q“關(guān)聯(lián)”的兩個(gè)點(diǎn)的坐標(biāo);
(2)如圖1,已知點(diǎn)R(﹣2,0)和拋物線W1:y=x2﹣2x,對(duì)于拋物線W1上的每一個(gè)點(diǎn)M,在拋物線W2上都存在點(diǎn)N,使得點(diǎn)N和M 被點(diǎn)R“關(guān)聯(lián)”,請(qǐng)?jiān)趫D1 中畫出符合條件的拋物線W2;
(3)正方形EFGH的頂點(diǎn)分別是E(﹣4,1),F(xiàn)(﹣4,﹣1),G(﹣2,﹣1),H(﹣2,1),⊙T的圓心為T(3,0),半徑為1.請(qǐng)?jiān)趫D2中畫出由正方形EFGH和⊙T的所有“中位點(diǎn)”組成的圖形(若涉及平面中某個(gè)區(qū)域時(shí)可以用陰影表示),并直接寫出該圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:
根據(jù)聯(lián)合國《人口老齡化及其社會(huì)經(jīng)濟(jì)后果》中提到的標(biāo)準(zhǔn),當(dāng)一個(gè)國家或地區(qū)65 歲及以上老年人口數(shù)量占總?cè)丝诒壤^7%時(shí),意味著這個(gè)國家或地區(qū)進(jìn)入老齡化.從經(jīng)濟(jì)角度,一般可用“老年人口撫養(yǎng)比”來反映人口老齡化社會(huì)的后果.所謂“老年人口撫養(yǎng)比”是指某范圍人口中,老年人口數(shù)(65 歲及以上人口數(shù))與勞動(dòng)年齡人口數(shù)(15﹣64 歲人口數(shù))之比,通常用百分比表示,用以表明每100 名勞動(dòng)年齡人口要負(fù)擔(dān)多少名老年人.
以下是根據(jù)我國近幾年的人口相關(guān)數(shù)據(jù)制作的統(tǒng)計(jì)圖和統(tǒng)計(jì)表.
2011﹣2014 年全國人口年齡分布圖

2011﹣2014 年全國人口年齡分布表

2011年

2012年

2013年

2014年

0﹣14歲人口占總?cè)丝诘陌俜直?/span>

16.4%

16.5%

16.4%

16.5%

15﹣64歲人口占總?cè)丝诘陌俜直?/span>

74.5%

74.1%

73.9%

73.5%

65歲及以上人口占總?cè)丝诘陌俜直?/span>

m

9.4%

9.7%

10.0%

根據(jù)以上材料解答下列問題:
(1)2011 年末,我國總?cè)丝诩s為億,全國人口年齡分布表中m的值為;
(2)若按目前我國的人口自然增長(zhǎng)率推測(cè),到2027 年末我國約有14.60 億人.假設(shè)0﹣14歲人口占總?cè)丝诘陌俜直纫恢狈(wěn)定在16.5%,15﹣64歲人口一直穩(wěn)定在10 億,那么2027 年末我國0﹣14歲人口約為億,“老年人口撫養(yǎng)比”約為;(精確到1%)
(3)2016 年1 月1 日起我國開始實(shí)施“全面二胎”政策,一對(duì)夫妻可生育兩個(gè)孩子,在未來10年內(nèi),假設(shè)出生率顯著提高,這(填“會(huì)”或“不會(huì)”)對(duì)我國的“老年人口撫養(yǎng)比”產(chǎn)生影響.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】研究幾何圖形,我們往往先給出這類圖形的定義,再研究它的性質(zhì)和判定方法.我們給出如下定義:如圖,四邊形ABCD中,AB=AD,CB=CD像這樣兩組鄰邊分別相等的四邊形叫做“箏形”;

(1)小文認(rèn)為菱形是特殊的“箏形”,你認(rèn)為他的判斷正確嗎?
(2)小文根據(jù)學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),通過觀察、實(shí)驗(yàn)、歸納、類比、猜想、證明等方法,對(duì)AB≠BC的“箏形”的性質(zhì)和判定方法進(jìn)行了探究.下面是小文探究的過程,請(qǐng)補(bǔ)充完成:
①他首先發(fā)現(xiàn)了這類“箏形”有一組對(duì)角相等,并進(jìn)行了證明,請(qǐng)你完成小文的證明過程.
已知:如圖,在”箏形”ABCD中,AB=AD,CB=CD.
求證:∠ABC=∠ADC.
證明:②小文由①得到了這類“箏形”角的性質(zhì),他進(jìn)一步探究發(fā)現(xiàn)這類“箏形”還具有其它性質(zhì),請(qǐng)?jiān)賹懗鲞@類“箏形”的一條性質(zhì)(除“箏形”的定義外);
③繼性質(zhì)探究后,小文探究了這類“箏形”的判定方法,寫出這類“箏形”的一條判定方法(除“箏形”的定義外):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某超市利用一個(gè)帶斜坡的平臺(tái)裝卸貨物,其縱斷面ACFE如圖所示. AE為臺(tái)面,AC垂直于地面,AB表示平臺(tái)前方的斜坡.斜坡的坡角∠ABC為45°,坡長(zhǎng)AB為2m.為保障安全,又便于裝卸貨物,決定減小斜坡AB的坡角,AD 是改造后的斜坡(點(diǎn)D在直線BC上),坡角∠ADC為31°.求斜坡AD底端D與平臺(tái)AC的距離CD.(結(jié)果精確到0.01m)[參考數(shù)據(jù):sin31°=0.515,cos31°=0.857,tan31°=0.601, ≈1.414].

查看答案和解析>>

同步練習(xí)冊(cè)答案