【題目】如圖,點A,B的坐標(biāo)分別為(1,4)和(4,4),拋物線y=a(x﹣m)2+n的頂點在線段AB上運動(拋物線隨頂點一起平移),與x軸交于C、D兩點(C在D的左側(cè)),點C的橫坐標(biāo)最小值為﹣3,則點D的橫坐標(biāo)最大值為( )
A.﹣3
B.1
C.5
D.8
【答案】D
【解析】解:當(dāng)點C橫坐標(biāo)為﹣3時,拋物線頂點為A(1,4),對稱軸為x=1,此時D點橫坐標(biāo)為5,則CD=8;
當(dāng)拋物線頂點為B(4,4)時,拋物線對稱軸為x=4,且CD=8,故C(0,0),D(8,0);
由于此時D點橫坐標(biāo)最大,
故點D的橫坐標(biāo)最大值為8;
故選:D.
當(dāng)C點橫坐標(biāo)最小時,拋物線頂點必為A(1,4),根據(jù)此時拋物線的對稱軸,可判斷出CD間的距離;
當(dāng)D點橫坐標(biāo)最大時,拋物線頂點為B(4,4),再根據(jù)此時拋物線的對稱軸及CD的長,可判斷出D點橫坐標(biāo)最大值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中有點B(﹣1,0)和y軸上一動點A(0,a),其中a>0,以A點為直角頂點在第二象限內(nèi)作等腰直角△ABC,設(shè)點C的坐標(biāo)為(c,d).
(1)當(dāng)a=2時,則C點的坐標(biāo)為( , );
(2)動點A在運動的過程中,試判斷c+d的值是否發(fā)生變化?若不變,請求出其值;若發(fā)生變化,請說明理由.
(3)當(dāng)a=2時,在坐標(biāo)平面內(nèi)是否存在一點P(不與點C重合),使△PAB與△ABC全等?若存在,直接寫出P點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.如圖,以等腰直角△ABC 的直角邊 AC 作等邊△ACD,CE⊥AD 于 E, BD、CE 交于點 F.
(1)求∠DFE 的度數(shù);
(2)求證:AB=2DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機,某商店決定購進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.
(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購進(jìn)這兩種紀(jì)念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進(jìn)貨方案?
(3)若銷售每件A種紀(jì)念品可獲利潤20元,每件B種紀(jì)念品可獲利潤30元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中小方格邊長為1,請你根據(jù)所學(xué)的知識解決下面問題.
(1)求網(wǎng)格圖中△ABC的面積.
(2)判斷△ABC是什么形狀?并所明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標(biāo)系的原點,A點的坐標(biāo)為(4,0),C點的坐標(biāo)為(0,5),點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的路線移動(即:沿著長方形移動一周)
(1)寫出點B的坐標(biāo)( , );
(2)當(dāng)點P移動了4秒時,描出此時P點的位置,并求出點P的坐標(biāo);
(3)在移動過程中,當(dāng)點P到x軸距離為4個單位長度時,求點P移動的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本例題
已知:如圖,AD是的角平分線,,,垂足分別為E、F.求證:AD垂直平分EF.
小明做法
證明:因為AD是的角平分線,,,所以
理由是:“角平分線上的點到這個角的兩邊的距離相等”.
因為,
所以AD垂直平分EF.
理由是:“到線段兩個端點距離相等的點在這條線段的垂直平分線上”.
老師觀點
老師說:小明的做法是錯誤的
請你解決
指出小明做法的錯誤;
正確、完整的解決這道題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD,EF交于點O,OG平分∠BOF,且CD⊥EF,∠AOE=64°,求∠AOF,∠DOG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為線段上一動點,分別過點作,,連接.已知,設(shè).
(1)用含的代數(shù)式表示的值;
(2)探究:當(dāng)點滿足什么條件時,的值最小?最小值是多少?
(3)根據(jù)(2)中的結(jié)論,請構(gòu)造圖形求代數(shù)式的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com