【題目】如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交BC的延長線于F,若∠F=30°,DE=1,則EF的長是_____.
【答案】2
【解析】
連接BE,根據(jù)垂直平分線的性質(zhì)、直角三角形的性質(zhì),說明∠CBE=∠F,進一步說明BE=EF,,然后再根據(jù)直角三角形中,30°所對的直角邊等于斜邊的一半即可.
解:如圖:連接BE
∵AB的垂直平分線DE交BC的延長線于F,
∴AE=BE,∠A+∠AED=90°,
∵在Rt△ABC中,∠ACB=90°,
∴∠F+∠CEF=90°,
∵∠AED=∠FEC,
∴∠A=∠F=30°,
∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,
∴∠CBE=∠ABC﹣∠ABE=30°,
∴∠CBE=∠F,
∴BE=EF,
在Rt△BED中,BE=2DE=2×1=2,
∴EF=2.
故答案為:2.
科目:初中數(shù)學 來源: 題型:
【題目】(題文)用一條長為18cm細繩圍成一個等腰三角形.
(1)如果腰長是底邊的2倍,那么各邊的長是多少?
(2)能圍成有一邊的長為4cm的等腰三角形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某裝修公司要粉刷樓的外墻,需要測量樓CD的高度.已知在樓的外墻上從樓頂C處懸掛一廣告屏,其高CE為2米,測量員用高為1.7米的測量器,在A處測得屏幕底端E的仰角為35°,然后他正對大樓方向前進6米,在B處測得屏幕頂端C的仰角為45°.請根據(jù)測量數(shù)據(jù),求樓CD的高度(參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈,結果精確到0.l米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在寬20米,長32米的矩形耕地上,修筑同樣寬的三條路(兩條縱向,一條橫向,并且橫向與縱向互相垂直),把這塊耕地分成大小相等的六塊試驗田,要使試驗田的面積是570平方米,問道路應該多寬?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為米的籬笆圍成.已知墻長為米(如圖),設這個苗圃園垂直于墻的一邊長為米.
若苗圃園的面積為平方米,求;
若平行于墻的一邊長不小于米,這個苗圃園的面積有最大值嗎?如果有,求出最大值;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用﹣1來表示的小數(shù)部分,事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是的小數(shù)部分,又例如:∵22<()2<32,即2<<3,∴的整數(shù)部分為2,小數(shù)部分為(﹣2).
請解答:
(1)的整數(shù)部分是 ,小數(shù)部分是 .
(2)如果的小數(shù)部分為a,的整數(shù)部分為b,求a+b﹣的值.
(3)已知x是3+的整數(shù)部分,y是其小數(shù)部分,直接寫出x﹣y的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某市近郊有一塊長為60米,寬為50米的矩形荒地,地方政府準備在此建一個綜合性休閑廣場,其中陰影部分為通道,通道的寬度均相等,中間的三個矩形(其中三個矩形的一邊長均為a米)區(qū)域?qū)佋O塑膠地面作為運動場地.設通道的寬度為x米.
(1)a= (用含x的代數(shù)式表示);
(2)若塑膠運動場地總占地面積為 2430平方米,則通道的寬度為多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com