【題目】如圖,已知△ABC是等邊三角形,點D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF,CF,連接BE并延長交CF于點G.下列結論:

①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結論是 .(填寫所有正確結論的序號)

【答案】①②③④.

【解析】

試題分析:△ABC是等邊三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等邊三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,

EF=AE,所以△AEF是等邊三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,BAE=CAF,AE=AF ,可判定△ABE≌△ACF,故①正確.②∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四邊形ABDF是平行四邊形,所以DF=AB=BC,故②正確.③△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF ,可判定△BCE≌△FDC,所以S△BCE=S△FDC,即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正確.④△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以==,又因BD=2DC,DC=DE,可得=2,FG=2EG.故④正確.

考點:三角形綜合題.

型】填空
束】
19

【題目】先化簡,再求值:(a+1-)÷(),其中a=2+.

【答案】3+2

【解析】分析:用分式的混合運算法則把原分式化簡再把a的值代入求解.

詳解:(a+1-)÷()

=()÷()

·

a(a-2).

a=2+時,

原式=(2+)(2+-2)

=3+.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△AB C沿DE,EF翻折,頂點A,B均落在點O處,且EA與EB重合于線段EO,若∠CDO+∠CFO=98°,則∠C的度數(shù)為( )

A. 40° B. 41° C. 42° D. 43°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩家商場以同樣的價格出售同樣的電器,但各自推出的優(yōu)惠方案不同,甲商場規(guī)定:凡超過元的電器,超出的金額按收取;乙商場規(guī)定:凡超過元的電器,超出的金額按收取,某顧客購買的電器價格是.

1)當時,分別用代數(shù)式表示在兩家商場購買電器所需付的費用

2)當時,該顧客應選擇哪一家商場購買比較合算?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正比例函數(shù)y=kx經(jīng)過點A,點A在第四象限,過點AAH⊥x軸,垂足為點H,點A的橫坐標為3,且△AOH的面積為3.

(1)求正比例函數(shù)的解析式;

(2)在x軸上能否找到一點P,使△AOP的面積為5?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線ABCD,直線EFAB、CD分別相交于點E、F

1)如圖1,若∠160°,求∠2、∠3的度數(shù);

2)若點是平面內的一個動點,連結PE、PF,探索EPFPEBPFD三個角之間的關系:

當點P在圖2的位置時,可得EPFPEBPFD;請閱讀下面的解答過程,并填空(理由或數(shù)學式).

解:如圖2,過點PMNAB,

EPMPEB(               。

ABCD(已知),MNAB(作圖),

MNCD(                )

∴∠MPFPFD(               。

PEBPFD(等式的性質)

EPFPEBPFD

當點P在圖3的位置時,請直接寫出EPF、PEB、PFD三個角之間的關系: ;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD是一高為4米的平臺,AB是與CD底部相平的一棵樹,在平臺頂C點測得樹頂A點的仰角α=30°,從平臺底部向樹的方向水平前進3米到達點E,在點E處測得樹頂A點的仰角β=60°,求樹高AB(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把正方體(圖1)沿著某些棱邊剪開,就可以得到正方體的表面展開圖,如圖2.在圖1正方體中,每個面上都寫了一個含有字母x的整式,相對兩個面上的整式之和都等于4x7,且A+D0,(說明:A、B、C、D都表示含有字母x的整式)請回答下面問題:

1)把圖1正方體沿著某些棱邊剪開得到它的表面展開圖2,要剪開   條棱邊;

2)整式B+C   

3)計算圖2中“D”和“?”所表示的整式(要寫出計算過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y=的圖象交于A,B兩點,且與x軸交于點C,點A的坐標為(2,1).

(1)求m及k的值;

(2)求點C的坐標,并結合圖象寫出不等式組0<x+m≤的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為

A B3 C1 D

查看答案和解析>>

同步練習冊答案