【題目】如圖,在中,邊上的一點,的中點,過點作的平行線交的延長線于點,且,連接

1)求證:的中點;

2)如果,試判斷四邊形的形狀,并證明你的結論.

【答案】1)證明見解析;(2)四邊形ADBF是矩形,證明見解析.

【解析】

1)先由AFBC,利用平行線的性質可證∠AFE=DCE,而EAD中點,那么AE=DE,∠AEF=DEC,利用AAS可證△AEF≌△DEC,那么有AF=DC,又AF=BD,從而有BD=CD
2)四邊形AFBD是矩形.由于AFDB,AF=DB,易得四邊形AFBD是平行四邊形,又AB=AC,BD=CD,利用等腰三角形三線合一定理,可知ADBC,即∠ADB=90°,那么可證四邊形AFBD是矩形.

證明:(1)∵EAD中點,

AE=DE

AFBC,

AFE=DCE,∠EAF=EDC

在△AFE和△DCE中,

∴△AFE≌△DCE,

AF=DC

又∵AF=DB,

DC=BD

DBC的中點

2)四邊形ADBF是矩形

AFDB,AF=DB,

∴四邊形ADBF是平行四邊形.

又∵AB=AC,

DBC中點,

ADBC,

四邊形ADBF是矩形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如右圖,正方形ABCD的邊長為2,點EBC邊上一點,以AB為直徑在正方形內作半圓

O,將△DCE沿DE翻折,點C剛好落在半圓O的點F處,則CE的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:如圖 1,在中,,連接 的延長線于點.則的值是____________

問題解決:如圖 2,在問題背景的條件下,將繞點在平面內旋轉,點始終在的外部,所在直線交于點,若,當點與點重合時,的長是____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AM是△ABC的中線,D是線段AM上一點(不與點A重合).DE∥AB交AC于點F,CE∥AM,連結AE.

(1)如圖1,當點D與M重合時,求證:四邊形ABDE是平行四邊形;

(2)如圖2,當點D不與M重合時,(1)中的結論還成立嗎?請說明理由.

(3)如圖3,延長BD交AC于點H,若BH⊥AC,且BH=AM.

①求∠CAM的度數(shù);

②當FH=,DM=4時,求DH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,且AB4,點C是弧AB上的一動點(不與AB重合),過點B作⊙O的切線交AC的延長線于點D,點EBD的中點,連接EC

1)若BD8,求線段AC的長度;

2)求證:EC是⊙O的切線;

3)當∠D30°時,求圖中陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某次臺風來襲時,一棵大樹樹干AB(假定樹干AB垂直于地面)被刮傾斜15°后折斷倒在地上,樹的項部恰好接觸到地面D(如圖所示),量得樹干的傾斜角為∠BAC=15°,大樹被折斷部分和地面所成的角∠ADC=60°,AD=4米,求這棵大樹AB原來的高度是(     )米?(結果精確到個位,參考數(shù)據(jù):1.4,1.7,2.4)

A.9B.10C.11D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,OA=4OC=3,分別以OC、OA所在的直線為x軸、y軸,建立如圖所示的坐標系,連接OB,反比例函數(shù)y=(x0)的圖象經過線段OB的中點D,并與矩形的兩邊交于點E和點F,直線ly=kx+b經過點E和點F

1)寫出中點D的坐標     ,并求出反比例函數(shù)的解析式;

2)連接OE、OF,求OEF的面積;

3)如圖,將線段OB繞點O順時針旋轉一定角度,使得點B的對應點H恰好落在x軸的正半軸上,連接BH,作OMBH,點N為線段OM上的一個動點,求HN+ON的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A(﹣2,1),B1n)兩點.

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)根據(jù)圖象寫出使一次函數(shù)的值>反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸、軸交于、兩點,與反比例函數(shù)的圖像交于點,且

1)求反比例函數(shù)的解析式;

2)點是直線上一點,過點軸的平行線交反比例函數(shù)的圖像于,兩點,連,,當時,求的值.

查看答案和解析>>

同步練習冊答案