【題目】在我市開展“五城聯(lián)創(chuàng)”活動(dòng)中,某工程隊(duì)承擔(dān)了某小區(qū)900米長(zhǎng)的污水管道改造任務(wù).工程隊(duì)在改造完360米管道后,引進(jìn)了新設(shè)備,每天的工作效率比原來提高了20%,結(jié)果共用27天完成了任務(wù),問引進(jìn)新設(shè)備前工程隊(duì)每天改造管道多少米?
【答案】解:設(shè)原來每天改造管道x米,由題意得:
+=27,
解得:x=30,
經(jīng)檢驗(yàn):x=30是原分式方程的解,
答:引進(jìn)新設(shè)備前工程隊(duì)每天改造管道30米.
【解析】首先設(shè)原來每天改造管道x米,則引進(jìn)新設(shè)備前工程隊(duì)每天改造管道(1+20%)x米,由題意得等量關(guān)系:原來改造360米管道所用時(shí)間+引進(jìn)了新設(shè)備改造540米所用時(shí)間=27天,根據(jù)等量關(guān)系列出方程,再解即可.
【考點(diǎn)精析】本題主要考查了分式方程的應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫出答案(要有單位)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】神仙居景區(qū)門票價(jià)格80元/人,景區(qū)為吸引游客,對(duì)門票價(jià)格進(jìn)行動(dòng)態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包 括10人)不打折,10人以上超過10人的部分打b折,設(shè)游客為x人,門票費(fèi)用為y元,非節(jié)假日門票費(fèi)用y1(元)及節(jié)假日門票費(fèi)用y2(元)與游客x(人)之間的函數(shù)關(guān)系如圖所示.
(1)a= , b=;
(2)直接寫出y1、y2與x之間的函數(shù)關(guān)系式;
(3)導(dǎo)游小王6月10日(非節(jié)假日)帶A旅游團(tuán),6月20日(端午節(jié))帶B旅游團(tuán)到神仙居景區(qū)旅游,兩團(tuán)共計(jì)50人,兩次共付門票費(fèi)用3040元,求A、B兩個(gè)旅游團(tuán)各多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)C(1,0),直線y=﹣x+7與兩坐標(biāo)軸分別交于A、B兩點(diǎn),D、E分別是AB,OA上的動(dòng)點(diǎn),當(dāng)△CDE周長(zhǎng)最小時(shí),點(diǎn)D坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組請(qǐng)結(jié)合題意,完成本題解答.
(1)解不等式①,得 ;
(2)解不等式②,得 ;
(3)把不等式①和②的解集在數(shù)軸上表示出來:
;
(4)原不等式組的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=(x+2)(x﹣4)與x軸交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,CD∥x軸交拋物線于點(diǎn)D,M為拋物線的頂點(diǎn).
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)設(shè)動(dòng)點(diǎn)N(﹣2,n),求使MN+BN的值最小時(shí)n的值;
(3)P是拋物線上一點(diǎn),請(qǐng)你探究:是否存在點(diǎn)P,使以P、A、B為頂點(diǎn)的三角形與△ABD相似(△PAB與△ABD不重合)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC內(nèi)接于⊙O,∠BAC的平分線交⊙O于點(diǎn)D,交BC于點(diǎn)E(BE>EC),且BD=2.過點(diǎn)D作DF∥BC,交AB的延長(zhǎng)線于點(diǎn)F.
(1)求證:DF為⊙O的切線;
(2)若∠BAC=60°,DE=,求圖中陰影部分的面積;
(3)若=,DF+BF=8,如圖2,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),OF⊥BC于點(diǎn)F,交⊙O于點(diǎn)E,AE與BC交于點(diǎn)H,點(diǎn)D為OE的延長(zhǎng)線上一點(diǎn),且∠ODB=∠AEC.
(1)求證:BD是⊙O的切線;
(2)求證:CE2=EHEA;
(3)若⊙O的半徑為5,sinA=,求BH的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AD為弦,∠DBC=∠A.
(1)求證:BC是⊙O的切線;
(2)連接OC,如果OC恰好經(jīng)過弦BD的中點(diǎn)E,且tanC=,AD=3,求直徑AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com