已知關(guān)于x的一元二次方程x2-(R+r)x+
14
d2=0沒有實數(shù)根,其中R,r分別為兩圓半徑,d為兩圓的圓心距,你能根據(jù)條件確定兩圓的位置關(guān)系嗎?請說明理由.
分析:首先利用根的判別式得到(R+r)2-d2<0,然后因式分解,得到R+r-d<0,進一步得到d>R+r,從而判斷兩圓外離.
解答:解:兩圓外離,理由如下:
∵一元二次方程x2-(R+r)x+
1
4
d2=0沒有實數(shù)根,
∴b2-4ac<0
即:[-(R+r)]2-4×
1
4
d2<0
∴(R+r)2-d2<0
∴(R+r+d)(R+r-d)<0
∵R+r+d>0
∴R+r-d<0
即d>R+r
∴兩圓外離.
點評:本題考查了圓與圓的位置關(guān)系及根的判別式,利用根的判別式得到d與兩半徑之間的不等關(guān)系是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次x2+(2k-3)x+k2=0的兩個實數(shù)根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次x2-6x+k+1=0的兩個實數(shù)根x1,x2,
1
x1
+
1
x2
=1
,則k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第23章《一元二次方程》中考題集(23):23.3 實踐與探索(解析版) 題型:解答題

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2007•汕頭)已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步練習(xí)冊答案