【題目】如圖,在數(shù)軸上點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,點(diǎn)C表示數(shù)c,其中數(shù)b是最小的正整數(shù),數(shù)a、c滿足|a+2|+(c-6)2=0.若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.
(1)由題意可得:a= ,b= ,c= .
(2)若點(diǎn)A以每秒1個(gè)單位長度的速度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長度和3個(gè)單位長度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),設(shè)點(diǎn)A、B、C同時(shí)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
①當(dāng)t=2時(shí),分別求AC、AB的長度;
②在點(diǎn)A、B、C同時(shí)運(yùn)動(dòng)的過程中,3AC-4AB的值是否隨著時(shí)間t的變化而變化?若變化,說明理由;若不變,求出3AC-4AB的值.
【答案】(1)-2,1,6;(2)①16,9;②在點(diǎn)A、B、C同時(shí)運(yùn)動(dòng)的過程中,3AC-4AB的值不隨時(shí)間t的變化而變化,它的值為定值12.
【解析】
(1) 根據(jù)絕對(duì)值的非負(fù)性和偶數(shù)次方數(shù)的非負(fù)性,即可得出a,c的值,再由b時(shí)最小的正整數(shù),即可得b的值.
(2) 用含有t的代數(shù)式分別表示AC、AB的長度,
①代入t=2,即可得到結(jié)果;
②AC、AB的代數(shù)式代入3AC-4AB中,即可得出結(jié)論.
(1)∵|a+2|+(c-6)2=0,b時(shí)最小的正整數(shù),
∴a=-2,b=1,c=6;
(2)∵當(dāng)時(shí)間為t秒時(shí),A點(diǎn)表示的數(shù)為-t-2,B點(diǎn)表示的數(shù)為2t+1,C點(diǎn)表示的數(shù)為3t+6.
∴,
①當(dāng)t=2時(shí),,,
②,即,在點(diǎn)A、B、C同時(shí)運(yùn)動(dòng)的過程中,3AC-4AB的值不隨時(shí)間t的變化而變化,它的值為定值12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊直角三角板,且∠C=90°,∠A=30°,現(xiàn)將圓心為點(diǎn)O的圓形紙片放置在三角板內(nèi)部.
(1)如圖①,當(dāng)圓形紙片與兩直角邊AC、BC都相切時(shí),試用直尺與圓規(guī)作出射線CO;(不寫作法與證明,保留作圖痕跡)
(2)如圖②,將圓形紙片沿著三角板的內(nèi)部邊緣滾動(dòng)1周,回到起點(diǎn)位置時(shí)停止,若BC=9,圓形紙片的半徑為2,求圓心O運(yùn)動(dòng)的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE是圓O的直徑,A在EB的延長線上,AP為圓O的切線,P為切點(diǎn),弦PD垂直于BE于點(diǎn)C.
(1)求證:∠AOD=∠APC;
(2)若OC:CB=1:2,AB=6,求圓O的半徑及tan∠APB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】喬亞萍做一道數(shù)學(xué)題,“已知兩個(gè)多項(xiàng)式,,試求.”其中多項(xiàng)式的二次項(xiàng)系數(shù)印刷不清楚
(1)喬亞萍看了答案以后知道,請(qǐng)你替喬亞萍求出多項(xiàng)式的二次項(xiàng)系數(shù);
(2)在(1)的基礎(chǔ)上,喬亞萍已經(jīng)將多項(xiàng)式正確求出,老師又給出了一個(gè)多項(xiàng)式,要求喬亞萍求出的結(jié)果.喬亞萍在求解時(shí),誤把“”看成“”,結(jié)果求出的答案為,請(qǐng)你替喬亞萍求出“”的正確答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=8cm,BC=10cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).如果P、Q分別從A、B同時(shí)出發(fā),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止.設(shè)運(yùn)動(dòng)時(shí)間為x秒,△PBQ的面積為ycm2.
(1)求y與x的函數(shù)關(guān)系式,寫出x的取值范圍;
(2)求運(yùn)動(dòng)多少秒時(shí),△PBQ的面積為12cm2;
(3)求運(yùn)動(dòng)多少秒時(shí),△PBQ的面有最大值.最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向右移動(dòng)3個(gè)單位長度,再向左移動(dòng)5個(gè)單位長度,可以看到終點(diǎn)表示的數(shù)是。
已知點(diǎn)A是數(shù)軸上的點(diǎn),完成下列各題:
(1)如果點(diǎn)A表示的數(shù)是3,將點(diǎn)A先向左移動(dòng)7個(gè)單位長度,再向右移動(dòng)5個(gè)單位長度,那么終點(diǎn)B表示的數(shù)是__________,A、B兩點(diǎn)間的距離為__________;
(2)如果點(diǎn)A表示的數(shù)是-4,將點(diǎn)A先向右移動(dòng)168個(gè)單位長度,再向左移動(dòng)256個(gè)單位長度,那么終點(diǎn)B表示的數(shù)是__________,A、B兩點(diǎn)間的距離為__________;
(3)一般地,如果點(diǎn)A表示的數(shù)是m,將點(diǎn)A先向右移動(dòng)n個(gè)單位長度,再向左移動(dòng)t個(gè)單位長度,那么終點(diǎn)B表示的數(shù)是__________,A、B兩點(diǎn)間的距離為__________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有個(gè)形如六邊形的點(diǎn)陣,它的中心是一個(gè)點(diǎn),算第一層,第二層每邊有兩個(gè)點(diǎn),第三層每邊有三個(gè)點(diǎn),依此類推.
(1)填寫下表:
層數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
該層對(duì)應(yīng)的點(diǎn)數(shù) | 1 | 6 | _____ | 18 | _____ | _____ |
(2)寫出第n層所對(duì)應(yīng)的點(diǎn)數(shù)為_____;
(3)如果某一層共96個(gè)點(diǎn),那么它是第_____層,此時(shí)所有層中共有_____個(gè)點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB,△COD是等腰直角三角形,點(diǎn)D在AB上,
(1)求證:△AOC≌△BOD;
(2)若AD=3,BD=1,求CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以四邊形ABCD的邊AB、AD為邊分別向外側(cè)作等邊三角形ABF和ADE,連接EB、FD,交點(diǎn)為G.
(1)當(dāng)四邊形ABCD為正方形時(shí)(如圖1),EB和FD的數(shù)量關(guān)系是 ;
(2)當(dāng)四邊形ABCD為矩形時(shí)(如圖2),EB和FD具有怎樣的數(shù)量關(guān)系?請(qǐng)加以證明;
(3)四邊形ABCD由正方形到矩形到一般平行四邊形的變化過程中,∠EGD是否發(fā)生變化?如果改變,請(qǐng)說明理由;如果不變,請(qǐng)?jiān)趫D3中求出∠EGD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com