【題目】如圖,在正方形ABCD中,點(diǎn)P是對(duì)角線BD上的一點(diǎn),點(diǎn)EAD的延長(zhǎng)線上,且PC=PE,PECD于點(diǎn)F

(1)求證:∠PCD=∠PED

(2)連接EC,求證:EC=AP;

(3)如圖,把正方形ABCD改成菱形ABCD,其他條件不變,當(dāng)∠DAB=60°時(shí),請(qǐng)直接寫(xiě)出線段ECAP的數(shù)量關(guān)系______

【答案】1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3AP=CE

【解析】

1)根據(jù)正方形性質(zhì)知道PC=PA,又由PE=PC知道PA=PE即可得出結(jié)論.

2)證明PEC為等腰直角三角形,即可得出結(jié)論.

3)根據(jù)(2)的思路和方法即可求出結(jié)論AP=CE

1)證明:在正方形ABCD中,AD=DC,

ADP=CDP=45°,

在△ADP和△CDP中,AD=DC;∠ADP=CDP;PD=PD,

∴△ADP≌△CDPSAS),

∴∠DAP=DCPPA=PC;

PC=PE,

PA=PE,

∴∠DAP=DEP,

∴∠DCP=DAP=DEP

2)由(1)知,△ABP≌△CBP,

∴∠BAP=BCP

∴∠DAP=DCP,

PA=PE,

∴∠DAP=E,

∵∠CFP=EFD(對(duì)頂角相等),

180°-PFC-PCF=180°-DFE-E,

即∠CPF=EDF=90°;

∴△CPE是等腰直角三角形,

EC=CP,

又∵AP=CP,

EC=AP

3AP=CE;理由如下:

在菱形ABCD中,AB=BC,∠ABP=CBP=60°,

在△ABP和△CBP中,AB=BC;∠ABP=CBP;PB=PB

∴△ABP≌△CBPSAS),

PA=PC,∠BAP=BCP,

PA=PE,

PC=PE,

∴∠DAP=DCP,

PA=PC,

∴∠DAP=AEP,

∴∠DCP=AEP

∵∠CFP=EFD(對(duì)頂角相等),

180°-PFC-PCF=180°-DFE-AEP,

即∠CPF=EDF=180°-ADC=180°-120°=60°,

∴△EPC是等邊三角形,

PC=CE,

AP=CE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)B、C為線段AD上的兩點(diǎn),AB=BC=CD,點(diǎn)E為線段CD的中點(diǎn),點(diǎn)F為線段AD的三等分點(diǎn),若BE=14,則線段EF=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.

(1)求函數(shù)y=kx+b和y=的表達(dá)式;

(2)已知點(diǎn)C(0,5),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),已知正方形ABCD在直線MN的上方,BC在直線MN上,EBC上一點(diǎn),以AE為邊在直線MN的上方作正方形AEFG.

(1)連接GD,求證:△ADG≌△ABE;

(2)連接FC,觀察并猜測(cè)∠FCN的度數(shù),并說(shuō)明理由;

(3)如圖(2),將圖(1)中正方形ABCD改為矩形ABCD,AB=a,BC=b(a、b為常數(shù)),E是線段BC上一動(dòng)點(diǎn)(不含端點(diǎn)B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點(diǎn)G恰好落在射線CD上.判斷當(dāng)點(diǎn)EBC運(yùn)動(dòng)時(shí),∠FCN的大小是否總保持不變?若∠FCN的大小不變,請(qǐng)用含a、b的代數(shù)式表示tanFCN的值;若∠FCN的大小發(fā)生改變,請(qǐng)舉例說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為提高市民的環(huán)保意識(shí),倡導(dǎo)節(jié)能減排,綠色出行,某市計(jì)劃在城區(qū)投放一批共享單車,這批單車分為A、B兩種不同款型,其中A型車單價(jià)400元,B型車單價(jià)320元.

(1)今年年初,共享單車試點(diǎn)投放在某市中心城區(qū)正式啟動(dòng),投放AB兩種款型的單車共100輛,總價(jià)值36800元.求本次試點(diǎn)投放的A型車、B型車的輛數(shù).

(2)試點(diǎn)投放活動(dòng)得到了廣大市民的認(rèn)可,該市決定將此項(xiàng)公益活動(dòng)在整個(gè)城區(qū)全面鋪開(kāi).按照試點(diǎn)投放中AB兩車型的數(shù)量比進(jìn)行投放,且投資總價(jià)值不低于184萬(wàn)元.問(wèn)整個(gè)城區(qū)全面鋪開(kāi)時(shí)投放的A型車、B型車至少多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲騎電動(dòng)車從A地到B地,乙騎自行車從B地到A地,兩人同時(shí)出發(fā),設(shè)乙騎自行車的時(shí)間為th),兩人之間的距離為skm),圖中的折線表示st之間的關(guān)系,根據(jù)圖象回答下列問(wèn)題.

1A、B兩地之間的距離為   km;

2)求甲出發(fā)多長(zhǎng)時(shí)間與乙相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系中,點(diǎn) A 2,2)、B0,1)點(diǎn) P x 軸上,且PAB 的等腰三角形,則滿足條件的點(diǎn) P 共有()個(gè)

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共50個(gè),小穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過(guò)程,下表是實(shí)驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):

摸球的次數(shù)

100

200

300

500

800

1000

3000

摸到白球的次數(shù)

65

124

278

302

481

599

1803

摸到白球的頻率

0.65

0.62

0.593

0.604

0.601

0.599

0.601

1)請(qǐng)估計(jì)當(dāng)很大時(shí),摸到白球的頻率將會(huì)接近 (精確到0.1);

2)假如摸一次,摸到黑球的概率 ;

3)試估算盒子里黑顏色的球有多少只.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)正方形ABCD的頂點(diǎn)DDEAC,交BC的延長(zhǎng)線于點(diǎn)E

1)判斷四邊形ACED的形狀,并說(shuō)明理由;

2)若CE=4,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案