【題目】如圖①,在正方形ABCD中,點(diǎn)P是對(duì)角線BD上的一點(diǎn),點(diǎn)E在AD的延長(zhǎng)線上,且PC=PE,PE交CD于點(diǎn)F.
(1)求證:∠PCD=∠PED;
(2)連接EC,求證:EC=AP;
(3)如圖②,把正方形ABCD改成菱形ABCD,其他條件不變,當(dāng)∠DAB=60°時(shí),請(qǐng)直接寫(xiě)出線段EC和AP的數(shù)量關(guān)系______.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)AP=CE.
【解析】
(1)根據(jù)正方形性質(zhì)知道PC=PA,又由PE=PC知道PA=PE即可得出結(jié)論.
(2)證明△PEC為等腰直角三角形,即可得出結(jié)論.
(3)根據(jù)(2)的思路和方法即可求出結(jié)論AP=CE.
(1)證明:在正方形ABCD中,AD=DC,
∠ADP=∠CDP=45°,
在△ADP和△CDP中,AD=DC;∠ADP=∠CDP;PD=PD,
∴△ADP≌△CDP(SAS),
∴∠DAP=∠DCP,PA=PC;
∵PC=PE,
∴PA=PE,
∴∠DAP=∠DEP,
∴∠DCP=∠DAP=∠DEP.
(2)由(1)知,△ABP≌△CBP,
∴∠BAP=∠BCP,
∴∠DAP=∠DCP,
∵PA=PE,
∴∠DAP=∠E,
∵∠CFP=∠EFD(對(duì)頂角相等),
∴180°-∠PFC-∠PCF=180°-∠DFE-∠E,
即∠CPF=∠EDF=90°;
∴△CPE是等腰直角三角形,
∴EC=CP,
又∵AP=CP,
∴EC=AP.
(3)AP=CE;理由如下:
在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,
在△ABP和△CBP中,AB=BC;∠ABP=∠CBP;PB=PB,
∴△ABP≌△CBP(SAS),
∴PA=PC,∠BAP=∠BCP,
∵PA=PE,
∴PC=PE,
∴∠DAP=∠DCP,
∵PA=PC,
∴∠DAP=∠AEP,
∴∠DCP=∠AEP,
∵∠CFP=∠EFD(對(duì)頂角相等),
∴180°-∠PFC-∠PCF=180°-∠DFE-∠AEP,
即∠CPF=∠EDF=180°-∠ADC=180°-120°=60°,
∴△EPC是等邊三角形,
∴PC=CE,
∴AP=CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)B、C為線段AD上的兩點(diǎn),AB=BC=CD,點(diǎn)E為線段CD的中點(diǎn),點(diǎn)F為線段AD的三等分點(diǎn),若BE=14,則線段EF=____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.
(1)求函數(shù)y=kx+b和y=的表達(dá)式;
(2)已知點(diǎn)C(0,5),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),已知正方形ABCD在直線MN的上方,BC在直線MN上,E是BC上一點(diǎn),以AE為邊在直線MN的上方作正方形AEFG.
(1)連接GD,求證:△ADG≌△ABE;
(2)連接FC,觀察并猜測(cè)∠FCN的度數(shù),并說(shuō)明理由;
(3)如圖(2),將圖(1)中正方形ABCD改為矩形ABCD,AB=a,BC=b(a、b為常數(shù)),E是線段BC上一動(dòng)點(diǎn)(不含端點(diǎn)B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點(diǎn)G恰好落在射線CD上.判斷當(dāng)點(diǎn)E由B向C運(yùn)動(dòng)時(shí),∠FCN的大小是否總保持不變?若∠FCN的大小不變,請(qǐng)用含a、b的代數(shù)式表示tan∠FCN的值;若∠FCN的大小發(fā)生改變,請(qǐng)舉例說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提高市民的環(huán)保意識(shí),倡導(dǎo)“節(jié)能減排,綠色出行”,某市計(jì)劃在城區(qū)投放一批“共享單車”,這批單車分為A、B兩種不同款型,其中A型車單價(jià)400元,B型車單價(jià)320元.
(1)今年年初,“共享單車”試點(diǎn)投放在某市中心城區(qū)正式啟動(dòng),投放A、B兩種款型的單車共100輛,總價(jià)值36800元.求本次試點(diǎn)投放的A型車、B型車的輛數(shù).
(2)試點(diǎn)投放活動(dòng)得到了廣大市民的認(rèn)可,該市決定將此項(xiàng)公益活動(dòng)在整個(gè)城區(qū)全面鋪開(kāi).按照試點(diǎn)投放中A、B兩車型的數(shù)量比進(jìn)行投放,且投資總價(jià)值不低于184萬(wàn)元.問(wèn)整個(gè)城區(qū)全面鋪開(kāi)時(shí)投放的A型車、B型車至少多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲騎電動(dòng)車從A地到B地,乙騎自行車從B地到A地,兩人同時(shí)出發(fā),設(shè)乙騎自行車的時(shí)間為t(h),兩人之間的距離為s(km),圖中的折線表示s和t之間的關(guān)系,根據(jù)圖象回答下列問(wèn)題.
(1)A、B兩地之間的距離為 km;
(2)求甲出發(fā)多長(zhǎng)時(shí)間與乙相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,點(diǎn) A( 2,2)、B(0,1)點(diǎn) P 在 x 軸上,且△PAB 的等腰三角形,則滿足條件的點(diǎn) P 共有()個(gè)
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共50個(gè),小穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過(guò)程,下表是實(shí)驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù) | 65 | 124 | 278 | 302 | 481 | 599 | 1803 |
摸到白球的頻率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)請(qǐng)估計(jì)當(dāng)很大時(shí),摸到白球的頻率將會(huì)接近 (精確到0.1);
(2)假如摸一次,摸到黑球的概率 ;
(3)試估算盒子里黑顏色的球有多少只.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)正方形ABCD的頂點(diǎn)D作DE∥AC,交BC的延長(zhǎng)線于點(diǎn)E.
(1)判斷四邊形ACED的形狀,并說(shuō)明理由;
(2)若CE=4,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com