【題目】如圖,在矩形ABCD中,AB=3,AD=5,點(diǎn)E在DC上,將矩形ABCD沿AE折疊,點(diǎn)D恰好落在BC邊上的點(diǎn)F處,求cos∠EFC的值.
【答案】.
【解析】
先根據(jù)矩形的性質(zhì)得AD=BC=5,AB=CD=3,再根據(jù)折疊的性質(zhì)得AF=AD=5,EF=DE,在Rt△ABF中,利用勾股定理計(jì)算出BF=4,則CF=BC﹣BF=1,設(shè)CE=x,則DE=EF=3﹣x,然后在Rt△ECF中根據(jù)勾股定理得到x2+12=(3﹣x)2,解方程得到x的值,進(jìn)一步得到EF的長(zhǎng),再根據(jù)余弦函數(shù)的定義即可求解.
∵四邊形ABCD為矩形,
∴AD=BC=5,AB=CD=3,
∵矩形ABCD沿直線AE折疊,頂點(diǎn)D恰好落在BC邊上的F處,
∴AF=AD=5,EF=DE,
在Rt△ABF中,∵BF===4,
∴CF=BC﹣BF=5﹣4=1,
設(shè)CE=x,則DE=EF=3﹣x
在Rt△ECF中,∵CE2+FC2=EF2,
∴x2+12=(3﹣x)2,解得x=,
∴EF=3﹣x=,
∴cos∠EFC==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)P是邊AC上一點(diǎn),過(guò)點(diǎn)P作PQ∥AB交BC于點(diǎn)Q,D為線段PQ的中點(diǎn),BD平分∠ABC,以下四個(gè)結(jié)論①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正確的結(jié)論的個(gè)數(shù)( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),直線分別與軸、軸交于點(diǎn),.拋物線經(jīng)過(guò)點(diǎn)與點(diǎn),且與軸的另一個(gè)交點(diǎn)為.點(diǎn)在該拋物線上,且位于直線的上方.
(1)求上述拋物線的表達(dá)式;
(2)聯(lián)結(jié),,且交于點(diǎn),如果的面積與的面積之比為,求的余切值;
(3)過(guò)點(diǎn)作,垂足為點(diǎn),聯(lián)結(jié).若與相似,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“三等分角”是數(shù)學(xué)史上一個(gè)著名的問(wèn)題,但僅用尺規(guī)不可能“三等分角”.下面是數(shù)學(xué)家帕普斯借助函數(shù)給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)的圖象交于點(diǎn)P,以P為圓心、以2OP為半徑作弧交圖象于點(diǎn)R.分別過(guò)點(diǎn)P和R作x軸和y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請(qǐng)研究以下問(wèn)題:
(1)設(shè)P(,)、R(,),求直線OM對(duì)應(yīng)的函數(shù)表達(dá)式(用含,的代數(shù)式表示);
(2)分別過(guò)點(diǎn)P和R作y軸和x軸的平行線,兩直線相交于點(diǎn)Q.請(qǐng)說(shuō)明Q點(diǎn)在直線OM上,并據(jù)此證明∠MOB=∠AOB;
(3)應(yīng)用上述方法得到的結(jié)論,你如何三等分一個(gè)鈍角(用文字簡(jiǎn)要說(shuō)明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,y關(guān)于x的二次函數(shù)是( )
A. y=ax2+bx+c B. y=x(x﹣1)
C. y= D. y=(x﹣1)2﹣x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線M:y=ax2+bx+c(a≠0)經(jīng)過(guò)A(﹣1,0),且頂點(diǎn)坐標(biāo)為B(0,1).
(1)求拋物線M的函數(shù)表達(dá)式;
(2)設(shè)F(t,0)為x軸正半軸上一點(diǎn),將拋物線M繞點(diǎn)F旋轉(zhuǎn)180°得到拋物線M1.
①拋物線M1的頂點(diǎn)B1的坐標(biāo)為 ;
②當(dāng)拋物線M1與線段AB有公共點(diǎn)時(shí),結(jié)合函數(shù)的圖象,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為2的正方形ABCD,點(diǎn)P從點(diǎn)A出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿A﹣D﹣C的路徑向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度沿B﹣C﹣D﹣A的路徑向點(diǎn)A運(yùn)動(dòng),當(dāng)Q到達(dá)終點(diǎn)時(shí),P停止移動(dòng),設(shè)△PQC的面積為S,運(yùn)動(dòng)時(shí)間為t秒,則能大致反映S與t的函數(shù)關(guān)系的圖象是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,P為CD邊上一點(diǎn)(DP<CP),∠APB=90°.將△ADP沿AP翻折得到△AD'P,PD'的延長(zhǎng)線交邊AB于點(diǎn)M,過(guò)點(diǎn)B作BN∥MP交DC于點(diǎn)N,連接AC,分別交PM,PB于點(diǎn)E,F.現(xiàn)有以下結(jié)論:
①連接DD',則AP垂直平分DD';
②四邊形PMBN是菱形;
③AD2=DPPC;
④若AD=2DP,則;
其中正確的結(jié)論是_____(填寫所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的部分圖象如圖所示,其中圖象與軸交于點(diǎn),與軸交于點(diǎn),且經(jīng)過(guò)點(diǎn).
求此二次函數(shù)的解析式;
將此二次函數(shù)的解析式寫成的形式,并直接寫出頂點(diǎn)坐標(biāo)以及它與軸的另一個(gè)交點(diǎn)的坐標(biāo).
利用以上信息解答下列問(wèn)題:若關(guān)于的一元二次方程(為實(shí)數(shù))在的范圍內(nèi)有解,則的取值范圍是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com