【題目】如圖,在矩形ABCD中,AB3,AD5,點(diǎn)EDC上,將矩形ABCD沿AE折疊,點(diǎn)D恰好落在BC邊上的點(diǎn)F處,求cosEFC的值.

【答案】

【解析】

先根據(jù)矩形的性質(zhì)得ADBC5,ABCD3,再根據(jù)折疊的性質(zhì)得AFAD5EFDE,在RtABF中,利用勾股定理計(jì)算出BF4,則CFBCBF1,設(shè)CEx,則DEEF3x,然后在RtECF中根據(jù)勾股定理得到x2+12=(3x2,解方程得到x的值,進(jìn)一步得到EF的長(zhǎng),再根據(jù)余弦函數(shù)的定義即可求解.

∵四邊形ABCD為矩形,

ADBC5,ABCD3,

∵矩形ABCD沿直線AE折疊,頂點(diǎn)D恰好落在BC邊上的F處,

AFAD5EFDE,

RtABF中,∵BF4,

CFBCBF541,

設(shè)CEx,則DEEF3x

RtECF中,∵CE2+FC2EF2

x2+12=(3x2,解得x,

EF3x,

cosEFC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,點(diǎn)P是邊AC上一點(diǎn),過(guò)點(diǎn)PPQABBC于點(diǎn)Q,D為線段PQ的中點(diǎn),BD平分∠ABC,以下四個(gè)結(jié)論①△BQD是等腰三角形;②BQDP;③PAQP;④=(1+2;其中正確的結(jié)論的個(gè)數(shù)( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),直線分別與軸、軸交于點(diǎn).拋物線經(jīng)過(guò)點(diǎn)與點(diǎn),且與軸的另一個(gè)交點(diǎn)為.點(diǎn)在該拋物線上,且位于直線的上方.

1)求上述拋物線的表達(dá)式;

2)聯(lián)結(jié),且于點(diǎn),如果的面積與的面積之比為,求的余切值;

3)過(guò)點(diǎn),垂足為點(diǎn),聯(lián)結(jié).相似,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“三等分角”是數(shù)學(xué)史上一個(gè)著名的問(wèn)題,但僅用尺規(guī)不可能“三等分角”.下面是數(shù)學(xué)家帕普斯借助函數(shù)給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OBx軸上、邊OA與函數(shù)的圖象交于點(diǎn)P,以P為圓心、以2OP為半徑作弧交圖象于點(diǎn)R.分別過(guò)點(diǎn)PRx軸和y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請(qǐng)研究以下問(wèn)題:

(1)設(shè)P(,)、R(),求直線OM對(duì)應(yīng)的函數(shù)表達(dá)式(用含,的代數(shù)式表示);

(2)分別過(guò)點(diǎn)PRy軸和x軸的平行線,兩直線相交于點(diǎn)Q.請(qǐng)說(shuō)明Q點(diǎn)在直線OM上,并據(jù)此證明∠MOB=∠AOB;

(3)應(yīng)用上述方法得到的結(jié)論,你如何三等分一個(gè)鈍角(用文字簡(jiǎn)要說(shuō)明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,y關(guān)于x的二次函數(shù)是( )

A. yax2+bx+c B. yx(x1)

C. y= D. y(x1)2x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線Myax2+bx+ca≠0)經(jīng)過(guò)A(﹣1,0),且頂點(diǎn)坐標(biāo)為B(0,1).

(1)求拋物線M的函數(shù)表達(dá)式;

(2)設(shè)Ft,0)為x軸正半軸上一點(diǎn),將拋物線M繞點(diǎn)F旋轉(zhuǎn)180°得到拋物線M1

拋物線M1的頂點(diǎn)B1的坐標(biāo)為   

當(dāng)拋物線M1與線段AB有公共點(diǎn)時(shí),結(jié)合函數(shù)的圖象,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為2的正方形ABCD,點(diǎn)P從點(diǎn)A出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿ADC的路徑向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度沿BCDA的路徑向點(diǎn)A運(yùn)動(dòng),當(dāng)Q到達(dá)終點(diǎn)時(shí),P停止移動(dòng),設(shè)△PQC的面積為S,運(yùn)動(dòng)時(shí)間為t秒,則能大致反映St的函數(shù)關(guān)系的圖象是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,PCD邊上一點(diǎn)(DPCP),∠APB90°.將△ADP沿AP翻折得到△AD'P,PD'的延長(zhǎng)線交邊AB于點(diǎn)M,過(guò)點(diǎn)BBNMPDC于點(diǎn)N,連接AC,分別交PMPB于點(diǎn)E,F.現(xiàn)有以下結(jié)論:

連接DD',則AP垂直平分DD';

四邊形PMBN是菱形;

AD2DPPC;

AD2DP,則;

其中正確的結(jié)論是_____(填寫所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的部分圖象如圖所示,其中圖象與軸交于點(diǎn),與軸交于點(diǎn),且經(jīng)過(guò)點(diǎn)

求此二次函數(shù)的解析式;

將此二次函數(shù)的解析式寫成的形式,并直接寫出頂點(diǎn)坐標(biāo)以及它與軸的另一個(gè)交點(diǎn)的坐標(biāo).

利用以上信息解答下列問(wèn)題:若關(guān)于的一元二次方程為實(shí)數(shù))在的范圍內(nèi)有解,則的取值范圍是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案